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Chapter 3 Predictive Modelling 
 
 
3.1 Introduction 
 
Data mining explores data and attempts to discover patterns, trends and 
relationships.  By so doing, it can transform raw data into useful information 
for decision making.  Many tools are available in data mining to analyse data.  
As discussed in the previous chapter, these include description and 
visualisation tools, association analysis tools and clustering tools.
 This chapter focuses on predictive modelling.  In particular, it 
discusses regression (a traditional statistical method), neural networks (an 
artificial intelligence model) and decision trees (a machine learning 
technique).  The next chapter discusses data mining issues that are 
encountered in the predictive modelling context. 
 The most common and important applications in data mining usually 
involve predictive modelling, which can be further categorised into two major 
categories.  Classification refers to the prediction of a target variable that is 
qualitative (i.e., categorical) in nature (e.g., predicting fraud versus non-fraud, 
high-risk versus low-risk or purchase versus non-purchase).  Estimation, on the 
other hand, refers to the prediction of a target variable that is quantitative (i.e., 
continuous) in nature (e.g., predicting the amount spent, duration of a call or 
account balance). 
 More precisely, whether a variable is qualitative or quantitative 
depends on the scale of measurement.  Measurement can be considered an 
assignment of numbers to characteristics, attributes or features.  For example, 
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we can measure a customer’s age, gender and propensity to purchase by 
assigning numbers to these. 
 The nominal scale of measurement assigns numbers that serve only 
the purpose of classification or identification.  For instance, in measuring gender, 
the number “1” can be assigned to females and the number “2” to males.  
These numbers identify the gender of a person by classifying the person as 
female or male.  It is not meaningful to subject these numbers to the basic 
mathematical operations of addition, subtraction, multiplication and division (e.g., 
it is not meaningful to say that the average gender among a group of customers 
is 1.58). 
 The ordinal scale of measurement assigns numbers that also serve the 
purpose of classification.  In addition, these numbers can be meaningful ranked.  
In measuring age, for example, the number “1” can be assigned to young 
respondents (less than 25 years old), the number “2” to middle-aged 
respondents (from 25 years old to less than 50 years old) and the number “3” to 
old respondents (who are 50 years old and above).  These numbers classify the 
age of a person as one of three groups.  Further, the three age groups can be 
ranked in some meaningful ascending or descending order.  As in the case of 
nominal measurement, it is not meaningful to subject the numbers in ordinal 
measurement to the basic mathematical operations of addition, subtraction, 
multiplication and division. 
 Variables that are measured on a nominal or ordinal scale are 
qualitative or categorical variables.  They can also be referred to as non-metric 
variables.  The term “non-metric” will be used from this point onwards to refer to 
such variables. 
 The interval scale of measurement assigns numbers such that the 
intervals between numbers can be meaningfully interpreted.  For example, 
budget performance can be measured as the difference between actual sales 
and budgeted sales.  Suppose managers A, B, C and D have budget 
performance of $800, $600, $300 and $100, respectively.  In this illustration, the 
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difference in budget performance between managers A and B is $200 (i.e., 
$800 - $600) and the difference in budget performance between managers C 
and D is also $200 ($300 - $100).  The interval of $200 can be meaningful 
interpreted and the first $200 (i.e., the difference between the budget 
performance of managers A and B) is the same as the second $200 (i.e., the 
difference between the budget performance of managers C and D). 
 In an interval scale of measurement, while intervals between numbers 
(i.e., addition and subtraction) can be meaningfully interpreted, ratios of the 
numbers (i.e., multiplication and division) cannot be meaningfully interpreted.  
The reason is that the zero point (0) is arbitrary and/or non-natural.  In the 
above illustration, zero for A is not the same as zero for B because it is 
determined relative to the budgeted sales (which may not be the same for A 
and B).  The implication is that changing the zero point does not affect intervals 
between numbers but it does affect ratios of numbers measured on an interval 
scale.  For example, when budgeted sales equals $1000, actual sales of $4500 
and $3000 indicate a difference in budget performance of $1500 (i.e., [4500 – 
1000] – [3000 – 1000]) and a ratio of 1.75 (i.e., 3500/2000).  However, if the 
budgeted sales is $2000, the difference is still the same (i.e., [4500 – 2000] – 
[3000 – 2000] = $1500) but the ratio is now 2.5 (i.e., 2500/1000). 
 The ratio scale of measurement applies where there is a non-arbitrary 
and/or natural zero, where zero reflects the absence of a characteristic, attribute 
or feature.  For instance, a customer’s expenditure can be measured on a ratio 
scale because zero expenditure means no expenditure.  Ratios can be 
meaningfully computed for variables measured on a ratio scale.  Therefore, the 
ratio of 2:1 means that the first expenditure is two times the second expenditure 
for the following pairs of numbers: $200 and $100, $700 and $350, or $4000 
and $2000.  Therefore, in the case of ratio measurement, it is meaningful to 
subject the numbers to the basic mathematical operations of addition, 
subtraction, multiplication and division. 
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 Variables that are measured on an interval or ratio scale are 
quantitative variables.  They can also be referred to as metric variables.  The 
term “metric” will be used from this point onwards to refer to such variables. 
 Given the above, classification refers to the prediction of a non-metric 
target variable and estimation to the prediction of a metric target variable.  Both 
classification and estimation fall under the major category of predictive 
modelling. 
 Generally, predictive modelling attempts to predict a target variable 
(also called a dependent variable) on the basis of one or more input variables 
(also called independent variables).  For ease of reference, the terms “target” 
and “input” variables will be used from this point onwards. 
 Three data mining tools are commonly used for predictive modelling, 
namely, regression, neural networks and decision trees.  Usually, all three are 
used and the results are evaluated to identify the best model. 
 
3.2 Regression Models 
 
Regression is a traditional statistical method of analysis that can be used for 
predictive modelling.  In particular, multiple regression can be used to predict 
metric target variables while logistic regression can be used to predict non-
metric target variables.  Input variables are used in a regression model to do the 
prediction.  For example, the input variables age, gender and income can be 
used to predict the amount of expenditure on a particular product (metric target 
variable) or whether a customer will purchase the product (non-metric target 
variable). 
 
3.2.1 Multiple Regression 
 
In the simplest form, a regression model has a target variable and an input 
variable.  Suppose that an organisation wishes to predict the amount of 
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expenditure on a particular product on the basis of the age of customers.  
Suppose further that expenditure and age data have been collected for a 
sample of customers and can be plotted in a scatter plot as shown in Figure 3.1. 
 The scatter plot suggests a linear (i.e., straight line) and positive 
relationship between expenditure and age.  The relationship is positive in that 
an increase in age is associated with an increase in expenditure, and vice versa.  
The regression model attempts to draw a line through the points to capture this 
relationship.  The regression model can be expressed mathematically as = bŷ 0 

+ b1X1, where = predicted expenditure, Xŷ 1 = age and b0, b1 = regression 

coefficients.  Graphically, the regression line can be drawn as a straight line 
passing through the points, as shown in Figure 3.2.  It is noted that b0 is the 
intercept and b1 is the slope (i.e., gradient) of the regression line. 
 
 
 

Age 

Expenditure 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1 Scatter Plot of Expenditure and Age 
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 The intercept (b0) can be interpreted as the value of y (i.e., expenditure) 
when X1 (i.e., age) is zero.  However, this interpretation is appropriate only if the 
points in the scatter plot spread across the point X1 = 0.  Otherwise, there is no 
empirical evidence to support a particular value of y when X1 is zero.  Also, 
sometimes it is not meaningful for an input variable to be 0.  In such instances, 
the intercept can be interpreted as an adjustment factor to improve the 
prediction of y.  The slope (b1) can be interpreted as the change in y (i.e., 
expenditure in this example) when there is a one-unit change in X1 (i.e., age). 
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Figure 3.2 Regression of Expenditure on Age 
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the difference between the actual value of y and the predicted value of y.  That 
is: 

e = y -  ŷ
Therefore, a squared error is: 

e2 = (y - )ŷ 2

and the sum of squared errors is: 
∑e2 = ∑(y - )ŷ 2

where the summation is made over all the points in the scatter plot (i.e., all  the 
observations in the data set). 
 It is noted that the sum of squared errors ∑e2 is a function of the 
regression coefficients b0 and b1 (via ).  In other words, given a particular set 

of values for b

ŷ
0 and b1, = bŷ 0 + b1X can be computed and hence e can be 

determined.  That is, ∑e2 can be determined.  Therefore, calculus (i.e., 
differentiation) can be applied to find the values of b0 and b1 that will minimise 
∑e2.  This concept underlies OLS estimation. 
 With the regression model = bŷ 0 + b1X1, it is possible to predict the 

values of y (i.e., expenditure) given values of X1 (i.e., age).  However, before 
using the regression model for prediction, it is appropriate to first assess the 
adequacy of the model.  One good adequacy measure is the statistical 
significance of the regression model.  If no regression model is available to help 
predict y, then the best prediction of y is the average of y (denoted as y ).  That 

is, the average expenditure of the sample is the best estimate of an individual’s 
expenditure (assuming that the sample is reflective of the population of interest). 
 On the other hand, the regression model discussed here can predict y 
(expenditure) on the basis of X1 (age).  Hence, one way to test the adequacy of 
the regression model is to evaluate if the regression model (i.e., ) gives 

significantly better predictions of expenditure as compared to just using the 
average expenditure (

ŷ

y ) to predict expenditure.  This is done in regression 

analysis by the model F test.  The p-value associated with this test indicates the 
degree of statistical significance of the regression model.  Traditionally, p-values 
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of 0.05 or lower show a significant regression model.  Other benchmarks such 
as 0.01 or 0.10 can also be used.  The smaller the benchmark (denoted by α in 
statistics), the more stringent the assessment of model adequacy.  The model F 
test is equivalent to testing if all the regression coefficients (not including the 
intercept) are equal to zero.  If all the regression coefficients in the regression 
model (not including the intercept) are equal to zero, then the regression model 
is not useful in predicting y.  Generally, a statistically significant regression 
model suggests an adequate model. 
 Another good adequacy measure is R-square (also called the 
coefficient of determination).  In the current example, R-square indicates the 
changes in y (i.e., expenditure) that can be explained by the changes in X1 (i.e., 
age).  Thus, R-square looks at how well changes in age can help predict (or 
explain) changes in expenditure.  It ranges from 0 to 1, with 0 indicating no 
explanatory power and 1 perfect explanatory power.  If R-square is 0, the points 
on the scatter plot will be randomly distributed; if R-square is 1, the points on the 
scatter plot will all lie on the regression line.  A possible rule-of-thumb is to 
consider a regression model as adequate if R-square is at least 0.6. 
 R-square increases when more input variables are added to the 
regression model and/or when the number of observations is decreased.  
Hence, to take into account the number of variables and the number of 
observations, the adjusted R-square can be computed.  This adjusted measure 
is appropriate when comparing regression models with, say, different numbers 
of variables. 
 Suppose that for the current example, the regression model is: 

Predicted Expenditure = 500 + 30*Age 
Then, if an individual is 40 years of age, the predicted expenditure is $1700 (i.e., 
500 + 30*40).  The coefficient of 30 for age can be interpreted as the expected 
increase in expenditure given a 1-unit increase in age (in this case, a 1-year 
increase in age).  It is also possible to test if the regression coefficient is 
statistically significant; that is, if it is significantly different from zero.  A zero 
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coefficient would mean that age has no effect on expenditure.  The coefficient 
test can be done by either a t test or an F test (they are equivalent in that the 
test statistics F = t2).  As in the case of a model test, a p-value is associated with 
the coefficient test and it can be used to assess statistical significance by 
comparing it to α (see earlier discussion).  A statistical test is significant if its p-
value is equal to or less than α.  In such an instance, the regression coefficient 
is significantly different from 0 and the regression model is useful in predicting 
(or explaining) the target variable. 
 A regression model can be easily expanded to include more than one 
input variable.  For example: 

Predicted Expenditure = b0 + b1*Age + b2*Income + b3*Gender 
Regression can incorporate non-metric input variables (e.g., gender) provided 
these variables are coded as dummy variables that take on only values of 0 and 
1 (e.g., 0 = female and 1 = male).  In this respect, a non-metric variable with c 
number of categories needs only (c – 1) number of dummy variables.  To 
illustrate, the races Chinese, Malay, Indian and Others can be coded as follows: 
    Dummy Variables 
    D1 D2 D3 
  Chinese  1 0 0 
  Malay  0 1 0 
  Indian  0 0 1 
  Others  0 0 0 
 
 As expected, dummy variables D1 to D3 take on only values 0 and 1.  
In this coding scheme, “Others” is the reference group (where all the dummy 
variables equal zero) and the coefficients of D1 to D3 are interpreted relative to 
the reference group.  Therefore, the coefficient for D1 represents the average 
difference in the target variable (e.g., expenditure) between Chinese and Others.  
Other coding schemes for dummy variables are also possible besides the 
standard (0, 1) coding. 
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 More generally, a regression model when expanded to include more 
than one input variable can be expressed as follows: 

ŷ  = b0 + b1X1 + b2X2 + … + bpXp

where there are p number of input variables.  This model is commonly referred 
to as multiple regression.  The regression concepts and statistics discussed 
earlier (e.g., OLS estimation, model F test, R-square, individual t tests … etc.) 
also apply to multiple regression. 
 Where there are many input variables, stepwise regression procedures 
are available to select the most significant variables in the final model.  For 
example, the forward selection procedure selects the most statistically 
significant variable (deemed to be the most important variable) at the first step, 
the next most statistically significant variable at the second step and so on.  This 
procedure stops when there is no more statistically significant variable to select 
or when the number of input variables in the final regression model is deemed 
sufficient.  Alternatively, instead of selecting the most important variables, the 
backward elimination procedure progressively removes the least important 
variables, starting from a full model with all the potential variables included in 
the model.  This procedure stops when there is no more insignificant variable to 
remove. 
 Finally, it is noted that the regression model assumes that the errors 
(i.e., [y - ]) are distributed identically and independently as a normal 

distribution with equal variances.  More discussion on the regression 
assumptions can be found in statistics textbooks such as Afifi and Clark (1996). 

ŷ

 
3.2.2 Logistic Regression 
 
Multiple regression can be used to predict a metric target variable.  If the target 
variable is non-metric, however, then logistic regression is appropriate.  One 
way to view logistic regression is to think of it as a modified version of multiple 
regression.  Suppose that the target variable in the following regression model 
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is coded as 0 and 1, which is taken to be the probability of an event occurring 
(say, the purchase of a particular item): 

ŷ  = b0 + b1X1 + b2X2 + … + bpXp

 Given a data set, the regression coefficients can be estimated but 
there will be two problems with such a regression model.  Firstly, the 
assumptions underlying the regression model (e.g., normality of the target 
variable) are likely to be violated.  This may lead to incorrect results.  Secondly, 
there is no assurance that (as probability estimates) will be within the range 

of 0 to 1.  That is, from the regression model can take on values below 0 and 

above 1.  This reduces the usefulness of as probability estimates as the 

probability of an event occurring ranges only from 0 to 1.  Although, it can be 
argued that all with values below 0 can be set to 0 and all with values 

above 1 can be set to 1, this is not a satisfactory solution as it biases the 
estimates of the regression coefficients. 

ŷ
ŷ

ŷ

ŷ ŷ

 One good way to circumvent the problems discussed above is to 
interpret as a theoretical index that is related to the probability of an event 

occurring and not as a probability estimate in itself.  That is, the model: 

ŷ

ŷ  = b0 + b1X1 + b2X2 + … + bpXp

predicts a theoretical index which is not limited by the range of 0 to 1.  In 
addition, this theoretical index can be transformed to a probability estimate via a 
cumulative probability distribution.  In particular, logistic regression uses the 
cumulative logistic distribution.  This is shown in Figure 3.3. 
 As can be seen, all values of the theoretical index  can be 

transformed into a probability estimate within the range of 0 to 1.  Recall that the 
objective of logistic regression is to predict a non-metric target variable.  
Suppose that a logistic regression model is constructed to predict whether an 
individual will be a purchaser of a particular product.  From the logistic 
regression model, a theoretical index can be computed.  This index can then be 
transformed via a cumulative logistic distribution  into a probability estimate of 
that individual being a purchaser.  To give a classification (i.e., non-metric 

ŷ
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prediction), the estimated probability of being a purchaser can be compared to a 
cut-off probability.  For simplicity, assume that 0.5 can be used as a cut-off 
probability.  Then, any individual whose estimated probability is 0.5 or above will 
be predicted as a purchaser.  Conversely, any individual whose estimated 
probability is below 0.5 will be predicted as a non-purchaser. 
 
 
 

Theoretical Index 

Probability = 0.5 

Probability = 0 

Probability = 1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3 Transformation via a Cumulative Logistic Distribution 
  
 Each estimated probability is associated with a particular value of the 
theoretical index and versa vice (see Figure 3.3).  Therefore, a cut-off 
probability is also associated with a cut-off value of the theoretical index.  This 
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means that to classify an individual as purchaser/non-purchaser, there is no 
need to transform the theoretical index into an estimated probability.  
Comparing the estimated theoretical index predicted by the logistic regression 
model (i.e., ) with the cut-off theoretical index is sufficient for the classification.  

However, computing the estimated probability generates additional information.  
In practice, the computation of the (predicted) theoretical index and estimated 
probability is done by computers. 

ŷ

 In logistic regression, the theoretical index has a special interpretation.  
It is the natural logarithm of the odds.  Odds is the ratio of the probability of an 
event occurring (e.g., a purchase) to the probability of the event not occurring 
(e.g., a non-purchase).  For example, if the probability of purchase is 0.8 and 
non-purchase is 0.2, then the odds of purchase to non-purchase is 4 (i.e., 
0.8/0.2).  Taking natural logarithms, ln(4) is 1.3863, which is the value of the 
theoretical index.  (Natural logarithms are logarithms taken to the base of e, 
which is a mathematical constant that is equal to 2.7183.  This “e” is different 
from the error term e in multiple regression).  While multiple regression uses 
linear estimation (i.e., the OLS estimation procedure), logistic regression uses 
non-linear estimation.  In particular, it uses the maximum likelihood estimation 
procedure.  More information of this procedure can be found in Greene (2003). 
 Mathematically, in the logistic regression model, the predicted 
probability of the event occurring is: 

Predicted Probability of Event = 1/[1 + e-( b0 + b1X1 + b2X2 + … + bpXp)] 
The predicted probability of the event not occurring (i.e., the non-event) is just 
one minus the predicted probability of the event occurring.  As noted earlier, e = 
2.7183. 
 As in the case of multiple regression, it is appropriate to first assess the 
adequacy of the logistic regression model before using it for prediction.  The 
statistical significance of the logistic regression model can be evaluated by 
looking at the model chi-square test statistic and its associated p-value.  The 
model chi-square test evaluates if all the model coefficients are zero, in which 
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case the model is useless in predicting the target non-metric variable.  If no 
logistic regression model is available to help predict y (say, purchase versus 
non-purchase), then the best prediction of y is the prior probabilities of y (i.e., 
the probabilities of purchase and non-purchase in the population of interest).  
Hence, the model test can be deemed to be a test of whether the logistic 
regression model classifies observations significantly better than a crude 
“model” that is based on prior probabilities. 
 The p-value associated with the model chi-square test indicates the 
degree of statistical significance of the logistic regression model.  It is usually 
compared with the traditional benchmarks of 0.01, 0.05 or 0.10.  The smaller 
the benchmark (or α), the more stringent the assessment of model adequacy.  
The model is statistically significant (and hence useful) if the p-value is equal to 
or less than α. 
 In addition, measures similar to R-square in multiple regression are 
also available in logistic regression.  As before, the higher the R-square 
measures, the better the model fits the data and hence, the better the model 
can classify the observations (i.e., predict the non-metric target variable).  
Another very common and good way to assess the adequacy of the logistic 
regression model is to look at its accuracy rates in classification.  The accuracy 
rates are usually presented in the form of a classification table (also called a 
confusion matrix).  A typical classification table is shown in Table 3.1.  The 
occurrence of interest (e.g., purchase or fraud) is designated as an event. 
 As shown in Table 3.1, A and D represent the number of correct 
predictions (or classifications) for events (e.g., purchase) and non-events (e.g., 
non-purchase), respectively.  Therefore, the accuracy rate of events is A/(A + B) 
and the accuracy rate of non-events is D/(C + D).  The total number of correct 
predictions is (A + D); that is, the overall accuracy rate of the logistic regression 
model is (A + D)/(A + B + C + D).  It is also possible to compute error rates 
instead of accuracy rates.  In this case, the focus will be on the B (events 
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incorrectly predicted as non-events) and C (non-events incorrectly predicted as 
events). 
 

Table 3.1 Classification Table of Logistic Regression Model 
 

Predicted Status  
Actual Status Event Non-event 

 
Total 

Event A B (A + B) 

Non-event C D (C + D) 

Total (A + C) (B + D) (A + B + C + D) 

 
 
 To crystallise the concepts, suppose that a logistic regression model is 
constructed to classify individuals as purchasers or non-purchasers of a 
particular product.  Then, the classification table summarising the model results 
might look like Table 3.2.  As shown, the accuracy rates for purchase and non-
purchase are 75% and 80%, respectively.  Conversely, the error rates for 
purchase and non-purchase are 25% and 20%, respectively.  The overall 
accuracy rate of the model is 76.92%; that is, the overall error rate is 23.08%.  
The organisation developing the prediction model will have to decide if the 
accuracy rates are acceptable before using the model.  More discussion on 
accuracy rates will be presented in the next chapter. 
 Individual chi-square tests are also available to test if each of the 
model coefficients is statistically significant; that is, if it is significantly different 
from zero.  A zero coefficient would mean that the variable is not useful in 
predicting y.  Again, the p-value associated with the coefficient test is used to 
assess statistical significance by comparing it to α.  A statistical test is significant 
if its p-value is equal to or less than α.  This indicates that the model coefficient 
is significantly different from zero and therefore that input variable is useful in 
predicting or explaining the non-metric target variable y. 
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Table 3.2 Accuracy and Error Rates of Logistic Regression Model 

 

Predicted Status  
Actual Status Purchase Non-purchase 

 
Total 

Purchase 600 (75%) 200 (25%) 800 (100%) 

Non-purchase 100 (20%) 400 (80%) 500 (100%) 

Total 700 600 1300 

Overall accuracy rate = 1000/1300 = 76.92% 

 
 
 In logistic regression, the interpretation of model coefficients is less 
straightforward compared to the case of multiple regression.  Suppose that a 
logistic regression model to predict purchase/non-purchase has only two input 
variables: age (measured in number of years) and gender (coded as 0 for male 
and 1 for female; i.e., male is the reference group).  Then, the model coefficient 
for age (a metric input variable) relates to the change in the (natural) logarithm 
of the odds (of purchase versus non-purchase) for a 1-unit (i.e., 1-year) change 
in age.  Also, the model coefficient for gender (a non-metric input variable) 
relates to the change in the (natural) logarithm of the odds (of purchase versus 
non-purchase) for a female compared to a male (i.e., the reference group).  
While analysing the magnitude of the impact of an input variable on the target 
variable is not so straightforward, determining the direction of the impact is 
easier.  Generally, a positive coefficient indicates a positive impact on the 
probability of the event and a negative coefficient indicates a negative impact on 
the probability of the event.  In any case, the interpretation of magnitude and 
direction is meaningful only for variables that are statistically significant. 
 Finally, the logistic regression model can be expanded to incorporate a 
multichotomous target variable (i.e., a target variable with more than two 
categories).  For example, credit cardholders can be classified as having a low, 
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medium or high risk of default.  Also, stepwise logistic regression procedures 
are available too.  A good discussion of logistic regression can be found in Afifi 
and Clark (1996). 
 
3.2.3 Illustration of Regression Model 
 
This illustration continues with MailPurchase, a mail order company with a 
database of 1400 customers.  Recall that for each customer, the following data 
are captured: 
1) Status: whether the customer has purchased a promoted product in 

any of the quarterly marketing campaigns last year; 
2) Expend: average monthly expenditure on the company’s products last 

year; 
3) Numpur: average number of purchases per quarter last year; 
4) Age: age of customer as at 1 January last year; 
5) Gender: gender of customer; 
6) Income: annual income of customer as at 1 January last year (in $’000); 
7) Race: race of customer; 
8) Marital: marital status of customer as at 1 January last year; and 
9) Member: whether the customer is a member of the loyalty card 

programme last year. 
(More details are given in section 2.2.1 of Chapter 2). 
 Suppose that to develop the next marketing campaign, MailPurchase 
is interested to target only existing customers with a high probability of purchase.  
Hence, it is interested to classify existing customers as likely purchasers or non-
purchasers.  To construct this prediction model, MailPurchase has decided to 
use “status” as the target variable and the other variables as input variables.  
That is, the input variables comprise both purchasing patterns (namely, expend 
and numpur) and demographic characteristics (namely, age, gender, income, 
race, marital and member).  From the prediction model, MailPurchase will be 
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able to predict the probability of purchase and hence be able to classify existing 
customers into the purchaser and non-purchaser groups. 
 For this application, MailPurchase has decided to use SPSS 
Clementine (in particular, the logistic regression node) to construct the 
prediction model.  The results are summarised in Figures 3.4 and 3.5.  The 
results in Figure 3.4 (see lower right table) indicate that the logistic regression 
model is statistically significant with a p-value of 0.000 (rounded to three 
decimal places).  That is, not all the model coefficients are equal to zero and 
hence, there is at least one variable that contributes significantly to the 
prediction of purchase and non-purchase status. 
 In addition, the equation in Figure 3.4 (see upper right panel) shows 
that the logistic regression model constructed based on the database is: 

Predicted Probability of Purchase = 1/[1 + e-( Theoretical Index)] 
where the theoretical index is: 

ŷ  = 1.426 – 0.02332*Age + 0.0009866*Expend + …  – 0.2849*Race(=Malay) 

Here, dummy variables are used to represent non-metric variables such as 
marital status and race. 

The above logistic regression model can be used to predict the 
probability of purchase and non-purchase.  This predicted probability when 
compared to the cut-off probability (default = 0.5) can be used to classify 
customers as purchasers or non-purchasers.  However, before the model is 
used, it is prudent to further assess its adequacy and accuracy. 
 Figure 3.5 (upper right table) shows the individual test results.  As 
shown, age, gender, marital status, membership and race are statistically 
significant with p-values lower than α of 0.05.  That is, these variables are 
significantly associated with the purchase/non-purchase of promoted 
products by the customers. 
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Figure 3.4 Logistic Regression Model and Model Test Result 
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Figure 3.5 Individual Variable Test Results and Accuracy Rates 
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 On the other hand, purchasing patterns such as the average 
monthly expenditure on MailPurchase’s products and the average number of 
quarterly purchases are not significantly associated with the purchase of 
promoted products during the quarterly marketing campaigns.  Also, annual 
income does not appear to affect the purchase or non-purchase of promoted 
items.  These findings can help MailPurchase understand its customers 
better. 
 In particular, interpretation of the coefficients of the significant 
variables can help MailPurchase analyse the direction and magnitude of the 
impact of these variables on the purchase/non-purchase of promoted products. 
 As shown in Figure 3.5 (bottom half), the accuracy rate for purchase 
is 64.3% and the accuracy rate for non-purchase is 65.6%.  The overall 
accuracy rate is 64.9%.  Assuming that these rates are acceptable to 
MailPurchase, the logistic regression model can be used for targeting the 
most likely customers for the next marketing campaign.  The next chapter will 
discuss accuracy rates in greater detail and also the financial evaluation of 
model results. 
 
3.3 Neural Networks 
 
Neural networks are frequently referred to as universal approximators as they 
can often model complex relationships in data well.  Hence, they are useful for 
recognising patterns in data and for predictive modelling.  Complex 
relationships include non-linear relationships as well as interaction effects.  With 
interaction effects, the effect of an input variable on the target variable depends 
on the level of another input variable.  For example, age may favourably affect 
expenditure when income is high; however, age may not affect expenditure 
when income is low.  Neural networks can be used to model both metric and 
non-metric target variables. 
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 Neural networks are modelled after the human brain, which can be 
perceived as a highly connected network of neurons (called nodes in neural 
networks terminology).   One way to understand the concepts underlying 
neural networks is to think about how a child learns to play basketball (Dhar and 
Stein, 1997).  In such a learning process, there is a fair amount of trial-and-error 
(e.g., throwing the basketball at different locations using different amounts of 
strength), adjustments (e.g., by varying the direction and strength of a throw) 
and generalisation (e.g., by “knowing” how to throw a basketball from new 
locations and under different conditions).  In a similar way, trial-and-error, 
adjustments and generalisation are involved in constructing neural network 
models. 
 In addition, the architecture of a neural network mirrors that of the 
nervous system.  As explained by Dhar and Stein (1997), the nervous system 
consists of a network of nerve cells or neurons.  These neurons receive 
different pieces of information (i.e., stimuli) and process them.  The information 
then travels through the nervous system (i.e., network) via neurotransmitters 
(i.e., connections).  Neuron connections can be strengthened or weakened over 
time and with experience.  Through this learning process, new responses to 
stimuli are developed, old ones are modified and unused ones are removed. 
 The concepts mentioned above can be translated into a neural network 
model in the following way.  Suppose that a target variable is to be predicted on 
the basis of five input variables.  Then, the target variable can be represented 
by an output node in the output layer of a neural network and the five input 
variables by five input nodes in the input layer of the neural network.  This 
representation is shown in Figure 3.6, where O1 is the output node and I1 to I5 
the input nodes.  Compared to the nervous system, the nodes are the neurons 
and the input variables the stimuli.  The stimuli are transmitted between neurons 
via connections. 
 Two important operations take place in a neural network.  Firstly, the 
five input nodes are aggregated by using weights.  Let weight wij be the weight 
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connecting node i to node j, where node i and node j are nodes in two different 
layers.  With reference to Figure 3.6, w11 refers to the weight connecting node I1 
to node O1.  Similarly, w51 refers to the weight connecting node I5 to node O1.  
Aggregation is done by multiplying each input by its weight and summing them 
up.  Mathematically, the aggregation of the input nodes Ii can be expressed as 
∑Iiwij.  Frequently, a bias term (say, I0) is also included in the aggregation.  This 
is similar to having an intercept term in regression.  Denoting the aggregated 
sum as Aj (i.e., an input value feeding into node j), then: 

Aj = I0 + ∑Iiwij for i = 1 to i 
Here, the weights correspond to connections in the nervous system. 
 
 
Output layer 
(1 node) 
 
Bias 
(1 node) 
 
            w11             

   I4   I3   I2   I1

  O1

Input layer 
(5 nodes) 
 
 

Figure 3.6 Neural Network with One Input Layer and One Out
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transformation has a coefficient of 1),  then ignoring the subscript j and 
assuming p input variables I1 to Ip: 

ŷ = Aj = I0 + ∑Iiwij

⇒ = Iŷ 0 + I1w1 + I2w2 + … + Ipwp

This is equivalent to multiple regression where I0 is the intercept and w1 to wp 
the regression coefficients.  In this sense, multiple regression can be considered 
a special (and very simple) case of neural network models. 
 If the transfer function is a logistic function, then: 

ŷ = 1/[1 + e-Aj] 

⇒ = 1/[1 + eŷ -(I0 + I1w1 + I2w2 + … + Ipwp)] 

which is equivalent to the logistic regression model.  Hence, the logistic 
regression model can also be considered a special case of neural network 
models. 
 The neural network architecture shown in Figure 3.6 is a very simple 
one.  In most neural networks, there is at least one hidden layer of hidden 
nodes (Hi).  Figure 3.7 incorporates one hidden layer with two hidden nodes H1 
and H2. 
 The extension of the workings of the neural network in Figure 3.6 to 
that in Figure 3.7 is relatively straightforward.  The first step is to aggregate the 
input layer (and bias) to generate an input value to be fed into the hidden layer 
nodes H1 and H2.  Let these aggregations be denoted by A1 and A2, respectively.  
Then, the second step is to transform A1 in H1 and A2 in H2 via some transfer 
function.  Let the transformed results be B1 and B2, respectively.  These 
represent values going out from the hidden nodes.  The third step is to 
aggregate B1 and B2 and the bias (Bias3) to generate an input value to be fed 
into the output node O1.  Finally, at the fourth step, this value is transformed 
through a transfer function to generate the predicted value . ŷ
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Output layer 
(1 node) 
 
 
 
 
Hidden layer 
(2 nodes) 
 
 
 
 
 
Input layer 

   I1    I2    I3    I4

Bias3

  H2  H1

Bias1 Bias2

  O1

   I5(5 nodes) 
 
 

Figure 3.7 Neural Network with One Hidden Layer 
 
 Since there is a weight associated with every connection of a pair of 
nodes in a neural network, there will be a lot more estimates in neural networks 
(i.e., weights) than in regression models (i.e., coefficients).  Further, it is possible 
to have several hidden layers and several hidden nodes for each layer.  
However, rules-of-thumb indicate that neural networks can predict well with only 
one or two hidden layers and with only five or fewer hidden nodes per layer.  An 
excessively large neural network tends to over-fit the data (by “memorising” 
unique patterns in the data).  Hence, it predicts poorly on data outside of the 
data that are used to construct the model (also called the training data in neural 
network terminology).  In other words, an over-fitted model lacks generalisability. 
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 While neural networks are universal approximators and hence very 
good prediction models, they are often criticised as “black-box” models.  That is, 
they do not indicate how input variables affect the target variable.  This 
shortcoming is not surprising given the aggregation and transformation of 
values throughout the entire network.  One way to mitigate this shortcoming is 
to perform sensitivity analysis.  This usually means varying a particular input 
variable from its mean and observing how the predicted value changes.  This 
will give some clue as to the effect of changes in an input variable on the target 
variable.  Another way to mitigate the “black-box” problem is to model the 
predicted values of the neural network using the input variables.  This will give 
some indication as to how the input variables are associated with the neural 
network predictions. 
 There are a few algorithms that neural networks can use for learning 
(i.e., to estimate the weights).  The most popular algorithm is the back-
propagation algorithm.  The general principles are as follows.  All the weights 
are initially set to some small random values.  Then an observation (known as 
an example in neural network terminology) is presented to the neural network 
for processing and prediction.  The predicted target value is compared to the 
actual target value and the error (i.e., actual – predicted) is computed.  Next, this 
error is fed back (or back-propagated) to the network and weights are then 
adjusted so as to minimise the error.  This process of learning and adjustment 
continues with every observation presented to the neural network.  There can 
be several cycles of all the observations being presented to the neural network.  
The training process stops when a pre-determined number of cycles has been 
completed or when the weights do not change significantly. 
 The adjustment of weights can be summarised by the following formula: 

wij,(t+1) = wij,(t) + λ(εwij)(Ii) + α(wij,(t) – wij,(t-1)) 
where t is the number of times the neural network is updated.  Here, λ is the 
learning parameter or learning rate that determines the speed of learning.  That 
is, a larger λ imposes a bigger adjustment to the weights, and vice versa.  
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Further, α is the momentum.  It reduces the current adjustment when previous 
adjustments are getting smaller.  This fine-tunes the weight adjustments to 
move towards minimum prediction error.  The weight adjustment also depends 
on the input value of the node (i.e., Ii) and the sensitivity of the output value of 
the node to a change in the weight (i.e., εwij). 
 As noted earlier, neural networks can be used for predicting metric and 
non-metric target variables.  That is, they can be used for either estimation or 
classification. 
 
3.3.1 Kohonen Networks 
 
The discussion so far assumes a predictive modelling context where a target 
variable is to be predicted on the basis of input variables.  This form of neural 
networks is called supervised training.  The neural networks are supervised in 
the sense that the actual target values serve as a “teacher” to guide learning 
(via the weights).  Neural networks can also be unsupervised – that is, there is 
no target variable to guide learning.  In unsupervised neural networks, all 
variables are of the same status and are not differentiated as target or input 
variables. 
 Kohonen networks (also called Kohonen nets and self-organising 
maps or SOM) are unsupervised neural networks that perform the function of 
clustering.  (Recall that Kohonen networks are discussed briefly under the topic 
of clustering in Chapter 2).  They cluster or segment data on the basis of 
patterns of the input variables so that similar patterns (i.e., observations) are 
grouped together. 
 A Kohonen network is a neural network that is arranged as an n-
dimensional grid or array of nodes.  Usually, only two dimensions, or at most 
three dimensions, are used.  Thus, a 2x3 Kohonen network has six nodes (or 
clusters).  Each node is connected to all the input variables.  Each node is also 
connected to other (so-called neighbourhood) nodes.  This architecture is very 

 73



Predictive Modelling 

different from the multi-layer architecture discussed in the previous section.  A 
graphical representation is shown in Figure 3.8. 
 
 
Output layer 
(6 nodes/ 
clusters) 
 
           Note: The input nodes 

     are connected not only 
     to output nodes C4 and 
     C5 but also to all the 
     other output nodes. 
     Further, each output 
     node is connected to 
          its neighbourhood 
          output nodes as 
                      well. 

 
Input layer 
(5 nodes) 

   C1

   C4

   C2

   C5    C6

   C3

   I1    I2    I3    I4    I5

 
Figure 3.8 Kohonen Network with Five Input Nodes and Six Output Nodes 

 
 The learning algorithm proceeds as follows.  All the weights are initially 
set to some small random values.  When an observation (or example) is 
presented to the Kohonen network, its pattern of input variables is compared to 
the weight pattern of the nodes in the grid.  The node with weights that are most 
similar (or the least dissimilar) to the values of the input variables “wins” the 
observation.  Here, dissimilarity is measured by the distance dj as defined below: 
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dj = √∑(xi – wij)2

where xi denotes the input values and wij the weights for connections from the 
input variables to node j.  The most similar node has the smallest distance or 
dissimilarity. 
 Next, the weights of this winning node are adjusted to make them more 
similar to the pattern of input variables.  In addition, the weights of surrounding 
(neighbourhood) nodes are also likewise adjusted, but to a lesser extent than 
the weight adjustments for the winning node.  Nodes that are defined as 
neighbourhood nodes of the winning node are pre-specified (e.g., 
neighbourhood nodes can be defined as nodes that are at most two nodes 
away from the winning node).  The adjustment formula can be summarised as 
follows: 

wij,(t+1) = wij,(t) + c(xi – wij,(t)) 
where c captures the learning rate as well as the specification of neighbourhood 
nodes.  Further elaboration of this can be found in Smith and Ng (2003). 
 This process of learning and adjustment continues with every 
observation and there can be several cycles of all observations being presented 
to the Kohonen network.  The process stops when a pre-determined number of 
cycles has been completed or when the weights do not change significantly.  
The end result is a map of nodes or clusters, where each cluster contains 
similar observations and clusters with similar patterns (or profiles) are closer 
together on the map.  Also, clusters with dissimilar profiles are further away 
from each other.  As mentioned in the previous chapter, this is a desirable 
property in clustering applications. 
 
3.3.2 Illustration of Neural Network Model 
 
To illustrate neural networks, suppose that MailPurchase wants to re-perform 
the illustration in section 3.2.3 using a neural network model instead of logistic 
regression.  Recall that MailPurchase is interested to classify existing customers 
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as likely purchasers or non-purchasers.  For this prediction model, purchase 
status is the target variable and the input variables comprise purchasing 
patterns (i.e., expend and numpur) and demographic characteristics (i.e., age, 
gender, income, race, marital and member).  For this application, MailPurchase 
has decided to use SPSS Clementine (in particular, the neural network node) to 
construct the prediction model.  The results are summarised in Figures 3.9 and 
3.10. 
 As shown in Figure 3.9 (lower right table), the accuracy rates for 
purchasers and non-purchasers are 66.62% and 64.56%, respectively.  These 
give an overall accuracy rate of 65.64% for the neural network model (see 
upper right table in Figure 3.9).  These accuracy rates are similar to those of the 
logistic regression model.  (The comparison of results across models will be 
discussed in the next chapter).  From the relative importance of the input 
variables, the top three most important input variables associated with purchase 
status are race, marital status and age.  It is noted that no statistical tests are 
associated with these results.  Instead, these results are derived from sensitivity 
analysis (see earlier discussion on neural networks).  The weights of the neural 
network model are given in Figure 3.10.  The prediction (i.e., classification) of 
the model is shown under the column “$N-status” and the confidence of the 
prediction is given in the column “$NC-status”.  No probability estimates are 
generated by the neural network model. 
 As in the case of the logistic regression model, assuming that the 
accuracy rates are acceptable to MailPurchase, the neural network model 
can be used for targeting the most likely customers for the next marketing 
campaign.  These are customers who are predicted as “A-purchaser” with a 
high “$NC-status” score. 
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Figure 3.9 Neural Network Results 
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<Neuron id="13" bias="-3.1362004423"> 
<Con from="0" weight="-1.77514997601"/> 
<Con from="1" weight="-1.15693985345"/> 
<Con from="2" weight="3.38720931463"/> 
<Con from="3" weight="-1.81908488353"/> 
<Con from="4" weight="1.23603810593"/> 
<Con from="5" weight="-0.0436623106591"/> 
<Con from="6" weight="-4.07963675578"/> 
<Con from="7" weight="0.54602806527"/> 
<Con from="8" weight="1.03582441993"/> 
<Con from="9" weight="-2.24659341588"/> 
<Con from="10" weight="3.34532475509"/> 
<Con from="11" weight="-1.72788821414"/> 
<Con from="12" weight="-1.6831201078"/> 
 
<Neuron id="14" bias="-2.20961300422"> 
<Con from="0" weight="-1.09137607335"/> 
<Con from="1" weight="0.177069335488"/> 
<Con from="2" weight="5.87462903845"/> 
<Con from="3" weight="-0.20523378221"/> 
<Con from="4" weight="-2.3223812605"/> 
<Con from="5" weight="0.531199561613"/> 
<Con from="6" weight="-1.4038129393"/> 
<Con from="7" weight="7.15735688805"/> 
<Con from="8" weight="0.578548091229"/> 
<Con from="9" weight="1.60371047408"/> 
<Con from="10" weight="-2.28636766866"/> 
<Con from="11" weight="-1.9796015086"/> 
<Con from="12" weight="-1.1998552929"/> 
 
<Neuron id="15" bias="1.25816246348"> 
<Con from="13" weight="-2.19327319962"/>
 
Figure 3.10 Neural Network Weights and Predictions 
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3.4 Decision Trees 
 
Besides regression and neural networks, decision trees can also be used for 
predictive modelling.  Generally, regression can be considered a statistical 
method, neural networks an artificial intelligence model and decision trees a 
machine learning technique. 
 Decision trees either estimate a metric target variable or classify 
observations into one category of a non-metric target variable by repeatedly 
dividing observations into mutually exclusive and exhaustive subsets.  Hence, 
the algorithm used to construct decision trees is also referred to as recursive 
partitioning algorithm. 
 In a decision tree, each observation is eventually assigned to a node 
(also called leaf) that has a predicted value or classification.  The end product 
can be graphically represented by a tree-like structure (called a decision tree), 
which is a compact explanation/representation of the data.  The end product 
can also be represented by explicit decision rules (similar to the association 
rules discussed in the previous chapter).  The resulting visual representation 
and explicit rules make decision trees easy to interpret and use.  In addition, 
decision trees can model complex non-linear and interaction relationships 
reasonably well. 
 Many algorithms are available to construct decision trees.  The more 
common ones are CHAID (chi-square automatic interaction detection), C5.0 (a 
proprietary algorithm) and CART (classification and regression tree).  Some 
algorithms are used for metric target variables only, some for non-metric target 
variables only and still some for both.  Decision tree algorithms are very 
intensive (i.e., a lot of computations are performed to construct the tree).  To 
better understand the decision tree methodology, the chi-square test of 
independence is first discussed. 
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3.4.1 Chi-square Test of Independence 
 
Suppose that there are two non-metric variables: risk of fraud (defined as high-
risk and low-risk) and location of transaction (defined as local and overseas).  
Suppose further that a credit card company is interested to investigate if the risk 
of fraud is dependent on the location of transaction.  To do this, a matched 
sample of 1000 high-risk and low-risk transactions is reviewed.  Assume that a 
matched sample is used here because high-risk transactions are rare and 
hence, a random sample will not yield a sufficient number of high-risk 
transactions for investigation.  Therefore, a sample of 500 high-risk transactions 
is first identified/selected and then matched to a sample of 500 low-risk 
transactions based on transactional characteristics, except for location of 
transaction.  A cross-tabulation of the sample data is given in Table 3.3. 
 

Table 3.3 Cross-tabulation of Risk of Fraud and Location of Transaction 
 

Risk of Fraud Location of 
Transaction High-risk Low-risk 

 
Total 

Local 100 (20%) 300 (60%) 400 

Overseas 400 (80%) 200 (40%) 600 

Total 500 (100%) 500 (100%) 1000 

 
 
 The investigation of the relationship between risk of fraud and location 
of transaction can be expressed by the null hypothesis “H0: Risk of fraud and 
Location of transaction are independent”.  A null hypothesis can be viewed as a 
statement for statistical testing.  If the null hypothesis H0 is rejected, then it can 
be concluded that risk of fraud and location of transaction are dependent.  That 
is, the relative incidence of high-risk and low-risk transactions depends on 
whether the transactions are made locally or overseas. 
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 Marginal (or prior) probabilities can be computed for the data in Table 
3.3.  These are shown in Table 3.4.  As can be seen, if a transaction is 
randomly chosen from the sample of 1000 transactions, then the probability of it 
being a high-risk transaction is 0.50 and the probability of it being a local 
transaction is 0.40.  To facilitate discussion, risk of fraud is abbreviated as 
“fraud” and location of transaction as “location”.  If fraud and location are 
independent of each other (i.e., if the null hypothesis H0 is true), then probability 
theory requires that the joint probability of a particular category of fraud and a 
particular category of location is: 

Prob(Fraud and Location) = Prob(Fraud)*Prob(Location) 
For example, 

Prob(High-risk and Local) = Prob(High-risk)*Prob(Local) 
= 0.50*0.40 = 0.20 

 
Table 3.4 Marginal Probabilities 

 

Risk of Fraud Location of 
Transaction High-risk Low-risk 

 
Total 

 
Probability 

Local 100 300 400 0.40 

Overseas 400 200 600 0.60 

Total 500 500 1000  

Probability 0.50 0.50  1.00 

 
 
 Following from above, if fraud and location are independent, then out 
of the 1000 transactions in the sample, 200 (i.e., 0.20*1000) transactions are 
expected to fall into that particular (i.e., high-risk and local) cell in the cross-
tabulation.  Similar computations can be made for all the other cells.  These are 
called expected frequencies as they represent expected outcomes under the 
assumption that H0 is true.  Expected frequencies are different from the 
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numbers shown in Table 3.3, which are referred to as actual frequencies (i.e., 
the outcomes actually observed).  The expected frequencies (with joint 
probabilities within brackets) are shown in Table 3.5. 
 

Table 3.5 Cross-tabulation of Expected Frequencies 
 

Risk of Fraud Location of 
Transaction High-risk Low-risk 

 
Total 

Local 200 (0.20) 200 (0.20) 400 

Overseas 300 (0.30) 300 (0.30) 600 

Total 500 500 1000 

 
 
 Whether fraud and location are dependent or independent can be 
assessed by comparing the actual frequencies in Table 3.3 with the expected 
frequencies in Table 3.5.  In particular, Table 3.5 shows the outcomes expected 
if fraud and location are indeed independent (i.e., if H0 is true) while Table 3.3 
shows the outcomes actually observed.  Hence, if fraud and location are in fact 
independent, then the actual and expected frequencies should be quite similar.  
Conversely, if fraud and location are in fact dependent, then the actual and 
expected frequencies should be rather dissimilar.  One way to measure the 
degree of similarity/dissimilarity in this context is the chi-square test statistic: 

χ2 = ∑[(actual frequency – expected frequency)2/(expected frequency)] 
summed over all the cells in the cross-tabulation. 
 A large χ2 suggests that fraud and location are probably dependent 
and hence, H0 can be rejected.  As with other statistic tests discussed earlier, 
the chi-square test statistic has a p-value too.  The test statistic χ2 and its 
associated p-value are inversely related (i.e., a large test statistic is associated 
with a small p-value, and vice versa).  Roughly speaking, for the current 
example, the p-value can be viewed as the probability of observing the actual 
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frequencies in Table 3.3 if H0 is true.  Therefore, if the p-value is small, then it is 
likely that H0 is false (since the probability of observing the actual frequencies if 
H0 is true is rather small).  Hence, H0 can be rejected.  This means that a 
smaller p-value indicates a stronger likelihood that fraud and location are 
dependent.  However, by rejecting H0, the probability of an incorrect rejection 
(i.e., H0 is actually true and yet rejected) is equal to the p-value. 
 Whether H0 should be rejected depends on the risk of incorrect 
rejection that one is willing to bear.  This is known as the level of statistical 
significance or α.  Traditionally, the required level of statistical significance (α) is 
usually set at 0.01, 0.05 or 0.10.  A higher α signifies a willingness to bear a 
greater risk of an incorrect rejection of H0 (i.e., concluding dependence between 
two non-metric variables when there is actually independence).  Also, H0 can be 
rejected as long as the p-value is less than or equal to α.  In this case, the 
probability of an incorrect rejection of H0 (i.e., p-value) is smaller than the risk of 
an incorrect rejection that one is willing to bear (i.e., α). 
 In the current example, if it is concluded that fraud and location are 
dependent, then it means that the relative incidence of fraud depends on 
whether the location of the transaction is local or overseas.  Here, the chi-
square test statistic is 166.67, with a p-value of 0.0001.  Hence, it can be 
concluded that fraud and location are dependent at α of 0.05.  In particular, 
looking at Tables 3.3 and 3.5, it can be seen that a relatively higher incidence of 
high-risk transactions occurs among overseas transactions.  Similarly, a higher 
incidence of low-risk transactions occurs among local transactions.  Viewed 
differently, the chi-square test result suggests that location significantly 
differentiate between the relative occurrence and non-occurrence of fraudulent 
transactions.  (More detail on the chi-square test of independence can be found 
in most basic statistics textbooks). 
 The above discussion facilitates the understanding of how decision 
trees are constructed.  In particular, from the decision tree perspective, the chi-
square test of independence helps to explain how the most significant variable 

 83



Predictive Modelling 

to split a decision tree into branches is determined and how the splitting points 
(or thresholds) are identified.  Generally, the more statistically significant a 
variable is, the more important it is for constructing the decision tree and the 
more accurate it is for prediction.  This understanding can then be extended to 
cover other decision tree algorithms. 
 
3.4.2 Chi-square Automatic Interaction Detection (CHAID) 
 
The chi-square automatic interaction detection (CHAID) algorithm is a 
commonly used algorithm to construct decision trees for non-metric target 
variables.  The following example explains the working of the algorithm. 
 Suppose that the objective of a data mining application is to predict the 
buying status (i.e., buyer versus non-buyer) of a particular product on the basis 
of the demographic variables gender (categorised as male and female), race 
(categorised as Chinese, Malay and Indian), age and income.  For these input 
variables, gender and race are non-metric while age and income are metric.  
Assume that the sample comprises 600 buyers and 900 non-buyers. 
 At the first step of constructing a decision tree using CHAID, each input 
variable is evaluated on its potential to split the data into two or more subsets so 
that the target variable is as differentiated (in a statistical sense) between the 
subsets as possible.  Since the target variable has only two categories (buyer 
and non-buyer) and gender also has only two categories (male and female), a 
2-way split can be made as shown in Figure 3.11. 
 From Figure 3.11, it can be seen that Nodes 1 and 2 together form a 
2x2 contingency table defined by the variables buying status and gender.  
Hence, a chi-square test of independence can be performed to assess the 
statistical significance of gender in differentiating between buyers and non-
buyers.  In particular, if the null hypothesis (that buying status and gender 
are independent) is rejected, then it means that the incidence of buyers/non-
buyers among males and females are significantly different.  In other words, 
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gender can significantly differentiate between buyers and non-buyers (e.g., 
there are proportionately more female buyers than male buyers).  In this 
example, the chi-square test statistic is 1.55 with a p-value of 0.213, which is 
not statistically significant for the traditional levels of α.  Thus, buying status 
does not depend on gender.  That is, gender does not help differentiate 
between buyers and non-buyers. 
 
 
 
 
 
          Male      Female 
  

Node 1 
Buyer         450   39.13% 
Non-buyer  700   60.87% 

Node 2 
Buyer         150   42.86% 
Non-buyer  200   57.14%

Node 0 
Buyer         600   40.00% 
Non-buyer  900   60.00% 

 
 
 
 

Figure 3.11 Decision Tree – Split by Gender 
 
 Similarly, the significance of race in differentiating between buyers 
and non-buyers can also be evaluated.  Since there are three categories of 
race, one possible split is shown in Figure 3.12.  As in the case of gender, a 
chi-square test of independence can be performed on race for Nodes 1, 2 
and 3 (a 2x3 contingency table).  The test assesses the statistical 
significance of race in differentiating between buyers and non-buyers.  Here, 
the chi-square test statistic is 4.66, with a p-value of 0.097.  Hence, at a 
significance level of 0.10, race is a significant variable in differentiating 
between buyers and non-buyers.  From Figure 3.12, it appears that Chinese 
consumers are less likely to buy the product as compared to their Malay and 
Indian counterparts. 
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         Chinese        Malay           Indian 
 
 
 
 

Node 1 
Buy    300   37.50% 
Non    500   62.50% 

Node 3 
Buy    145   42.03% 
Non    200   57.97% 

Node 2 
Buy    155   43.66% 
Non    200   56.34% 

Node 0 
Buyer          600   40.00% 
Non-buyer   900   60.00% 

 
Figure 3.12 Decision Tree – Split by Race 

 
 It can also be noted from Figure 3.12 that Malay and Indian 
consumers have a very similar purchasing pattern.  Hence, it may be 
possible to combine the two races into one single subset.  This combination 
is shown in Figure 3.13.  The chi-square test statistic is now 4.46, with a p-
value of 0.035.  Therefore, having Chinese as a node and Malay and Indian 
as another node differentiates between buyers and non-buyers better (in a 
statistical sense) than having the three races as separate nodes do.  
Generally, for a non-metric input variable with more than two categories, a 
decision tree algorithm would try different combinations of the categories to 
search for the split(s) that best differentiate (i.e., predict) the target variable.  
In CHAID, how well the target variable is differentiated or predicted is 
assessed by the chi-square test of independence.  That is, a statistical 
criterion is used. 
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     Chinese  Malay & Indian 

Node 1 
Buyer         300   37.50% 
Non-buyer  500   62.50% 

Node 2 
Buyer         300   42.86% 
Non-buyer  400   57.14% 

Node 0 
Buyer         600   40.00% 
Non-buyer  900   60.00% 

 
 
 
 
 

Figure 3.13 Decision Tree – Split by Race (Binary Split) 
 
 Determining the best split for metric input variables is more difficult.   
To illustrate, assume that a metric input variable has the following five values 
in ascending order: A < B < C < D < E.  Then, four possible splitting points 
(or thresholds) are the average of A and B, the average of B and C, the 
average of C and D, and the average of D and E.  This means that for the 
purpose of splitting, the metric input variable can be considered as a variable 
with five categories, with their boundaries defined by the four averages 
mentioned above.  Hence, the chi-square test of independence can be 
applied to the five categories separately or in any combination.  However, 
given that values in a metric input variable are ordered, combinations can 
only be made for adjacent values (e.g., A, B and C can be combined into one 
category but not A, C and E).  This is not the case for non-metric input 
variables where all combinations of the categories are possible and 
interpretable (e.g., Chinese with Malay, Chinese with Indian, and Malay with 
Indian).  As metric input variables can take on many values (much more than 
the five values illustrated here), decision tree algorithms perform very 
intensive computations to evaluate metric input variables. 
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 In the current example, suppose that the best splits for age and 
income are those shown in Figures 3.14 and 3.15.  Then, the corresponding 
chi-square test statistics are 5.52 (p-value = 0.019) and 10.77 (p-value = 
0.001), respectively.  These results are statistically significant (i.e., age and 
income do differentiate between the buyers and non-buyers).  Hence, age 
and income can contribute towards predicting buying status.  As the figures 
show, increasing age and increasing income are associated with a higher 
probability of buying the product. 
 
 
 
 
 
         < 30 years    30 years and above 

Node 1 
Buyer         230   36.51% 
Non-buyer  400   63.49% 

Node 2 
Buyer         370   42.53% 
Non-buyer  500   57.47% 

Node 0 
Buyer         600   40.00% 
Non-buyer  900   60.00% 

 
 
 
 
 

Figure 3.14 Decision Tree – Split by Age 
 
 At the second step of the decision tree algorithm, the statistical results 
(i.e., chi-square test statistics or p-values) of all the input variables are 
compared and the most significant input variable is selected to split the tree at 
the best threshold(s) identified for that variable.  The most significant variable 
can be deemed to be the variable that best differentiate between the categories 
in the (non-metric) target variable, and hence the input variable that can predict 
the target variable best. 
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     < $100,000        $100,000 and above 

Node 1 
Buyer         350   36.84% 
Non-buyer  600   63.16%

Node 2 
Buyer         250   45.45% 
Non-buyer  300   54.55% 

Node 0 
Buyer         600   40.00% 
Non-buyer  900   60.00%

 
 
 
 
 

Figure 3.15 Decision Tree – Split by Income 
 
 For the input variables gender, race, age and income, the most 
statistically significant variable is income (with the smallest p-value of 0.001).  
When the decision tree is split by income as per Figure 3.15, there are two child 
nodes: Node 1 and Node 2.  Node 0 is called the parent node.  Child nodes can 
themselves be parent nodes as the decision tree grows to more levels (i.e., 
greater depth). 
 At the third step, the first and second steps are repeated for each 
child node in the decision tree.  With reference to Figure 3.15, there are two 
child nodes: (1) income < $100,000, and (2) income of $100,000 or more.  
Hence, each input variable is again evaluated on its potential to split the data in 
each child node into two or more subsets so that the target variable (in each 
child node) is as differentiated (in a statistical sense) between the subsets as 
possible.  At this level (or depth) of the decision tree the earlier child nodes are 
now parent nodes.  Also, although Node 1 and Node 2 are the result of splitting 
Node 0 by income, the input variable income can still be used to further split the 
nodes into finer income ranges (e.g., income of $100,000 to less than $150,000 
and income of $150,000 and above). 
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 Using the same input variable again for splitting may not be possible in 
certain instances.  For example, when a parent node is split by gender into male 
and female consumers, the node of male consumers cannot be further split by 
gender as the node comprises only male consumers. 
 Decision tree algorithms perform steps one to three 
repeatedly−hence the name recursive partitioning algorithm.  The iterative 
process stops when a stopping rule in encountered.  For example, tree 
growing may stop if: (1) the decision tree has grown to a pre-specified 
maximum depth or number of levels, (2) all the potential parent nodes fail to 
have a pre-specified minimum number of observations, (3) all the potential 
child nodes fail to have a pre-specified minimum number of observations, or 
(4) none of the input variables can reach a pre-specified level of statistical 
significance. 
 Sometimes to keep the decision tree parsimonious (i.e., small and 
yet accurate), tree pruning is performed.  That is, the contribution of each 
split is evaluated by comparing the accuracy of the decision tree with and 
without the split.  Splits that do not contribute significantly to the accuracy of 
the decision tree are then removed.  In tree pruning, what constitutes a 
significant contribution has to be defined (e.g., a required minimum 
improvement in accuracy rates).  Sometimes the number of splits at each 
node is limited to keep the tree parsimonious (i.e., small yet accurate).  
Stopping rules and tree pruning prevent the over-fitting of data, which 
produces decision trees that perform poorly on new data.  However, there is 
always a trade-off between a more parsimonious (and therefore more 
interpretable) decision tree and a more accurate (and therefore bigger) 
decision tree. 
 To conclude the current example, assume that the final decision tree 
constructed is the one shown in Figure 3.16, where B represents buyer and N 
non-buyer.  Also, the predicted classification in the terminal nodes is indicated in 
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bold type.  Terminal nodes are final nodes that do not split any further.  Their 
paths define the decision rules for classifying observations. 
 
 
 
 
 
Income:      < $100,000          $100,000 and above 
 
 
 
 
Age: < 25 ≥ 25           Gender:    male female 
 
 
 
 
Race:           Chinese Malay & Indian  
 
 
 
 

Node 0 
B    600  40.00% 
N    900  60.00%

Node 1 
B    350  36.84% 
N    600  63.16% 

Node 2 
B    250  45.45% 
N    300  54.55%

Node 3 
B    50   9.09% 
N  500  90.91% 

Node 4 
B  300  75.00%
N  100  25.00%

Node 7 
B      30  15.00% 
N    170  85.00%

Node 5 
B  200  50.00%
N  200  50.00%

Node 6 
B    50  33.33% 
N  100  66.67% 

Node 8 
B    170  85.00% 
N      30  15.00%

 
Figure 3.16 Final Decision Tree 

 
 The following comments can be made about the decision tree in Figure 
3.16.  Firstly, nodes 3, 4, 6, 7 and 8 are terminal nodes, which predict the 
classification of observations based on the mode (i.e., most commonly 
occurring category in the target variable) in each node.  That is: 

 91



Predictive Modelling 

1) Node 3: a customer with income of less than $100,000 and age of less 
than 25 years is predicted as a non-buyer (with a confidence of 
90.91%); 

2) Node 4: a customer with income of less than $100,000 and age of at 
least 25 years is predicted as a buyer (with a confidence of 75.00%); 

3) Node 6: a customer with income of at least $100,000 and who is 
female is predicted as a non-buyer (with a confidence of 66.67%); 

4) Node 7: a customer with income of at least $100,000 and who is male 
and Chinese is predicted as a non-buyer (with a confidence of 85.00%); 
and 

5) Node 8: a customer with income of at least $100,000 and who is male 
and Malay or Indian is predicted as a buyer (with a confidence of 
85.00%). 

 Input variables that appear higher up in the decision tree can be 
deemed as more important variables in predicting the target variable.  Hence, 
from Figure 3.16, income is the most important variable, followed by age and 
gender.  The next most important input variable is race.  It is noted that the 
contribution of age, gender and race to the prediction of buying status apply 
only to certain segments of the sample.  For example, age is an important 
variable only for those with income of less than $100,000.  Such segmentation 
allows the modelling of interaction relationships.  Decision trees can model non-
linear relationships too (e.g., when nodes split into more than two subgroups 
showing non-linear associations between the input and target variables).  As 
can be observed, a decision tree is very easy to interpret as the results can be 
visually represented as a tree-like structure.  The results can be summarised 
into explicit decision rules too. 
 To assess the adequacy of the decision tree, its accuracy rates can be 
computed from the terminal nodes.  The classification table for Figure 3.16 is 
shown in Table 3.6.  As shown, the accuracy rates for buyers and non-buyers 
are 78.33% and 85.56%, respectively.  The overall accuracy rate is 82.67%. 

 92



Predictive Modelling 

 
Table 3.6 Accuracy and Error Rates of Decision Tree Model 

 

Predicted Status  
Actual Status Buyer Non-buyer 

 
Total 

Buyer 470 (78.33%) 130 (21.67%) 600 (100%) 

Non-buyer 130 (14.44%) 770 (85.56%) 900 (100%) 

Total 600 900 1500 

Overall accuracy rate = 1240/1500 = 82.67% 

 
 
3.4.3 Other Decision Tree Algorithms 
 
In the discussion of CHAID, a statistical criterion (i.e., the chi-square test 
statistic or its associated p-value) is used to determine the input variables for 
constructing the decision tree as well as the thresholds for splitting the parent 
nodes so as to predict the target variable as accurately as possible.  Instead of 
a statistical criterion, however, some decision tree algorithms use non-statistical 
criteria.  Whatever the criterion used, the primary objective is still to make the 
decision tree as accurate as possible in predicting the target variable.  The term 
accuracy is used in a very general sense here.  
 One way to think about using non-statistical criteria to construct a 
decision tree is to imagine the tree as a filtering process.  In particular, nodes 
that are higher up in the decision tree do not differentiate between the 
categories in the target variable as well as nodes that are lower down in the 
decision tree (see, for example, Figure 3.16).  In other words, filtering gets 
better as the decision tree grows in that the nodes become purer, more orderly 
or more informative (i.e., the nodes become better in predicting or indicating a 
particular category of the target variable).  Hence, one way to determine the 
best input variable and threshold (for splitting) is to identify that variable that 
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leads to the best improvement in purity, orderliness or information content.  This 
is also the variable that leads to the most reduction in impurity, disorderliness or 
lack of information. 
 In some decision tree algorithms, impurity, disorderliness or lack of 
information is measured by the concept of entropy.  In particular, a higher level 
of entropy implies a lower level of purity, orderliness or information content.  The 
formula to compute entropy (H) can be written as follows: 

H = - ∑Pilog2(Pi) 
where Pi is the probability of the ith category of the target variable occurring in a 
particular node.  For example, in Node 8 of Figure 3.16, the probability of buyers 
is 0.85 and that of non-buyers is 0.15.  Therefore, for this node: 

H = - [0.85log2(0.85) + 0.15log2(0.15)] 
= - [0.85(- 0.235) + 0.15(- 2.735)] = 0.61 

 Entropy can be computed for each node in the decision tree.  Also, 
entropy for a decision tree is the total of the entropy of all the terminal nodes 
(i.e., not the intermediate nodes) in the tree.  The best input variable and 
threshold to grow a tree are that variable and threshold that give the greatest 
reduction in entropy.  As a decision tree becomes purer, more orderly and more 
informative, its entropy approaches 0.  The reduction in entropy is also 
sometimes referred to as information gain.  The C5.0 algorithm is a proprietary 
algorithm (see the web site http://www.rulequest.com) that is based on concepts 
similar to information gain. 
 In CART (classification and regression tree), instead of the entropy 
measure, the Gini measure is used.  The formula for the Gini measure (G) is: 

G = ∑PiPj

where Pi and Pj (i ≠ j) are the probabilities of the different categories of a target 
variable in a node of the decision tree.  The tree growing process is similar to 
that described above using entropy.  However, CART performs only binary 
splits (i.e., two-way splits into only two subgroups). 
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 The chi-square test of independence in CHAID is appropriate only for 
non-metric target variables.  For metric target variables, if a statistical criterion is 
desired, then the analysis of variance (ANOVA) is a good alternative.  Like the 
chi-square test, ANOVA generates test statistics and p-values that can be used 
to determine the best input variables and thresholds to grow the decision tree.  
The idea of differentiation is still applicable.  However, differentiation for metric 
target variables refers to nodes that best differentiate the mean of the metric 
target variable. 
 Suppose that there are two nodes comprising male and female 
consumers and the target variable is expenditure.  In this case, for gender to 
contribute significantly to the prediction of expenditure, it is desirable for male 
and female consumers to have mean expenditures that are as different (i.e., 
differentiated) as possible.  How well gender can differentiate between the 
mean expenditure of male and female consumers can be indicated by the 
ANOVA results.  The tree construction process as per the earlier discussion of 
CHAID can then be used.  In SPSS AnswerTree, the CHAID algorithm can 
apply either the Chi-square test of independence or ANOVA (analysis of 
variance) to handle non-metric and metric target variables, respectively. 
 When the target variable is metric, purity, orderliness and information 
content can also be measured by the variance of the target variable.  The 
greater the variance, the lesser the extent of purity, orderliness and information 
content.  Therefore, measures involving variance can also be computed to 
guide the construction of decision trees.  Finally, it is noted that CART can 
predict both non-metric and metric target variables. 
 
3.4.4 Illustration of Decision Tree Model 
 
To illustrate decision trees, suppose that MailPurchase wants to re-perform the 
illustration in section 3.2.3 using a decision tree model instead of a logistic 
regression model.  In this application, MailPurchase is interested to classify 
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existing customers as likely purchasers or non-purchasers (i.e., purchase status 
is the target variable).  The input variables are the purchasing patterns (i.e., 
expend and numpur) and demographic characteristics (i.e., age, gender, 
income, race, marital and member).  Suppose that MailPurchase has decided to 
use SPSS Clementine (in particular, the C5.0 node) to construct the prediction 
model.  The results are summarised in Figures 3.17 and 3.18. 
 As shown in Figure 3.17 (see bottom right table), the accuracy rates for 
purchasers and non-purchasers are 66.21% and 68.93%, respectively.  The 
overall accuracy rate of the decision tree model is 67.50% (i.e., [488 + 
457]/1400).  This overall accuracy rate is better than those of the logistic 
regression and neural network models discussed earlier.  (More detailed 
comparison of models will be discussed in the next chapter).  The input 
variables included in the decision tree (in descending order of importance) are 
race, member, age and income (see middle right table of Figure 3.17).  No 
statistical tests are associated with these results.  Instead, the importance of the 
input variables is assessed on the basis of information gain. 
 The decision rules are also given in Figure 3.17 (see middle right table).  
For example, the last decision rule indicates that if an existing customer is an 
Indian, then he/she is predicted as a purchaser (with a confidence of 0.767 – to 
be explained later).  The other rules are more complicated in that they involve 
more input variables.  To illustrate, the first decision rule predict a purchaser if 
an existing customer is a non-Indian who is a member of the loyalty card 
programme and who is 42 years old or below. 
 For intermediate nodes, the number of observation is shown in 
brackets (e.g., the number of Chinese, Malay and Others is 1,117).  For 
terminal nodes, in addition to the number of observations, the confidence of 
prediction (i.e., the probability of the predicted group in the node) is also given.  
For example, for the last decision rule, the rule is derived from 283 observations 
in the data set and of these, 76.7% are purchasers. 
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Figure 3.17 Decision Tree Results – Rules and Accuracy Rates 
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Figure 3.18 Decision Tree 
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 The confidence of prediction is similar to the confidence of association 
rules in the previous chapter.  It also serves as probability estimates of the 
decision tree model.  However, they are not as sophisticated as the probability 
estimates generated by the logistic regression model. 
 Figure 3.18 visualises the decision tree and makes the decision tree 
results easier to understand and interpret.  For example, node 8 indicates that 
an existing customer has a 64.65% probability of being a non-purchaser if 
he/she is a non-Indian who is not a member of the loyalty card programme and 
who is above 26 years of age.  As in the cases of the logistic regression and 
neural network models, assuming that the accuracy rates are acceptable to 
MailPurchase, the decision tree model can be used for targeting the most 
likely customers for the next marketing campaign. 
 
3.5 Summary 
 
This chapter focuses on predictive modelling, which is one of the most 
common and important applications in data mining.  In particular, this chapter 
discusses regression, neural networks and decision trees. 
 There is no one best data mining tool for predictive modelling as 
each of these models has its own pros and cons.  For example, regression is 
easy to apply and use but it is cumbersome to include non-linear and 
interaction effects in regression models.  To do so, additional terms are 
needed in the regression model (e.g., X2 or X1*X2).  In addition, the functional 
form of the non-linear and interaction effects has to be specified.  On the 
other hand, neural networks are a very good universal approximator but their 
results are not very interpretable.  A neural network is often referred to as a 
“black box” that reveals very little about the relationships captured by the 
model. 
 Decision trees have very interpretable results that can be visualised 
and that can also be converted into decision rules.  Given this, it is not 
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surprising that in the KDD-Cup (a data mining competition) in the year 2000, 
the use of decision trees outnumbered other data mining tools more than two 
to one (see Kohavi, Rothleder and Simoudis, 2002).  Decision trees can also 
handle missing values well (by assigning them as a separate category).  
However, decision trees are not truly multivariate in that at every split, only 
one input variable is considered at a time. 
 There is no one model that is superior under all circumstances.  This 
is especially so because different models can lead to different results 
depending on the actual data being mined.  Hence, in practice, it is common 
to construct all the regression, neural network and decision tree models and 
then assess the competing models to identify a champion (i.e., or so-called 
“best”) model.  This chapter focuses on the methods of predictive modelling.  
The assessment of prediction models and the comparison of these models 
comprise the content of the next chapter. 
 Finally, the two-category classification discussed in this chapter can 
be extended to target variables with more than two categories.  For decision 
trees, this will be reflected in the decision tree nodes and decision rules.  For 
neural networks, more output nodes will be added and predictions to all the 
categories will be made.  For logistic regression, it is a little more complicated.  
Suppose that there are q number of categories in the target variable.  Then, 
one of these categories will be used as a reference category and (q – 1) 
number of equations will be generated.  These equations can be used to 
derive the probability of an observation belonging to each of the q categories.  
This observation is then classified as belonging to that category that has the 
highest probability.  Generally, the greater the number of categories for 
classification, the lower the overall accuracy rate of the model will be 
because there is now more scope for “confusion” (i.e., misclassification). 
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