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Chapter 4 Data Mining Issues 
 
 
4.1 Introduction 
 
Data mining tools can be used for description and visualisation, association 
and clustering, and predictive modelling.  Chapter 2 focuses on description, 
visualisation, association and clustering while Chapter 3 focuses on 
predictive modelling and the three most commonly used predictive modelling 
tools, namely, regression, neural networks and decision trees.  In both 
chapters, theoretical aspects are discussed and practical applications are 
illustrated.  This chapter extends the discussion on predictive modelling by 
looking at a few important data mining issues. 
 In particular, Chapter 4 explores the validation of prediction models 
and highlights the factors affecting the determination of optimal cut-off points.  
It also discusses measures of prediction effectiveness (i.e., the use of 
evaluation charts and financial assessments as means to evaluate 
competing prediction models).  Finally, a comprehensive illustration of 
predictive modelling incorporating tools discussed in Chapter 3 and some of 
the issues explored in this chapter is presented. 
 
4.2 Model Validation 
 
To facilitate discussion, suppose that a data mining application is developed 
to predict a non-metric target variable on the basis of several input variables.  
(The case of a metric target variable will be discussed later).  When statistical 
methods (e.g., logistic regression) are used for predictive modelling, 

 103



Data Mining Issues 

statistical results are available to assess the adequacy of the resulting 
prediction model.  These include test statistics and p-values for the model 
and input variables and other measures such as R-square.  However, 
statistical results are often not available for artificial intelligence models (e.g., 
neural networks) and machine learning techniques (e.g., decision trees).  
Therefore, these tools frequently use non-statistical measures to assess the 
adequacy of the models.  Accuracy rates are the most commonly used non-
statistical measure of model adequacy. 
 The assessment of the adequacy of prediction models are also 
referred to as the validation (or testing) of models.  In particular, the models 
are validated to ensure that they are adequate (or sufficiently accurate) for 
use.  In model validation, it is important that a validation (or testing) sample is 
used instead of the construction (or training) sample.  The construction 
sample comprises the data used to construct a prediction model.  If model 
validation is also performed on the construction sample, then the accuracy 
rates computed will be upward biased.  In other words, if the same data are 
used for model construction as well as model validation, then the computed 
accuracy rates will be higher than what they would actually be when the 
model is deployed. 
 Conceptually, it is best to have a construction data set to construct 
the prediction model and a validation data set to validate the constructed 
model.  This will lead to the least biased estimates of the accuracy rates of 
the model when it is used.  Having separate construction and validation data 
sets may not be a major problem in many data mining applications as such 
applications are likely to involve a lot of data.  Hence, the available data can 
be easily partitioned into two large data sets.  The important requirement is 
for both the data sets to be representative of the population of interest on 
which the prediction model is to be applied.  For example, if a model is to be 
constructed to predict the acceptance of a particular healthcare service for 
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retired persons, then the construction and validation data sets should reflect 
the population of retired persons. 
 If the construction data set does not reflect the population of interest, 
then the constructed model will not perform well when applied to the 
population of interest.  On the other hand, if the validation data set does not 
reflect the population of interest (although the construction data set does), 
then the accuracy rates computed on the validation data set will not reliably 
estimate the performance of the model when it is eventually applied.  Neither 
will it reliably estimate the accuracy rates of the constructed model. 
 To apply the above concepts is relatively easy.  An organisation 
needs only to define how the original data set is to be randomly partitioned 
into a construction and a validation data set.  This can be done, for example, 
by specifying the percentage of data to be used for construction; the 
remaining will be used for validation.  For instance, an organisation can 
specify that 70% of the available data should be randomly selected for model 
construction.  By default, the remaining (randomly selected) 30% of the data 
will be used for model validation.  It is reasonable to use more data for model 
construction than for model validation (70%-30% is a good rule-of-thumb).  
This approach, however, is not data-efficient in that the validation data are 
used only for validation and hence do not contribute to constructing the 
model. 
 To mitigate the above in data mining applications, the n-fold 
validation method is commonly used.  Here, all the data available for 
predictive modelling are taken to be a single data set.  In the first step, this 
data set is partitioned randomly into equal-size (or approximately equal-size) 
data sets according to the value of n.  For example, if n = 2, then the 
available data are randomly partitioned into two data sets of equal (or 
approximately equal) size.  In the second step, the prediction model is 
constructed using (n – 1) of the partitioned data set(s) and then validated on 
the nth partitioned data set that is not used in the model construction.  The 
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validation results (i.e., correct and incorrect predictions or classifications) of 
the held-out partitioned data set are then noted.  This step is repeated until 
each of the partitioned data sets has had the opportunity to be the held-out 
data set.  In the third and last step, all the validation results are aggregated 
and the accuracy rates computed for the prediction model. 
 It is important to differentiate between constructing a prediction 
model and validating it.  In particular, a model can be constructed based on 
all the available data.  However, this model can be validated based using the 
n-fold validation method where the data are partitioned for validation 
purposes. 
 Continuing the discussion with n = 2, the available data will be 
partitioned into two equal-size (for approximately equal-size) data sets.  For 
simplicity, let these two data sets be called A and B.  In the second step, a 
prediction model will be constructed on A and then validated on B.  Next, a 
prediction model will also be constructed on B and then validated on A.  In 
the third step, the validation results are combined to yield the accuracy rates 
for the final model that is constructed based on the total of both A and B.  
The validation accuracy rates estimate the performance of the model when it 
is used.  This method (where n = 2) is also known as the split-half 
methodology. 
 At the other extreme is the jack-knife methodology where n = N 
(where N is the sample size of the total data set).  As before, the available 
data are partitioned into n equal-size data sets.  When n = N, this means that 
each partitioned data set is just one observation.  A prediction model will be 
constructed using all except one (i.e., [n – 1] or [N – 1]) observations.  The 
constructed model is then validated on the held-out observation and the 
classification result noted.  This process is repeated until every observation 
has had a chance to be the held-out observation.  That is, a total of n (= N) 
number of models will be constructed and validated n (= N) times.  As before, 
the validation results are combined to yield the accuracy rates for the model 
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that is constructed based on the total data set.  The validation accuracy rates 
estimate the performance of the model when it is used. 
 Between the two extremes of n from 2 to N are a range of 
possibilities.  As a final example of the n-fold validation method, suppose that 
n = 10.  Then, the available data will be randomly partitioned into ten data 
sets of equal (or approximately equal) size.  At each iteration, one of the ten 
partitioned data sets will be held-out as the validation sample for a model 
constructed based on the other nine partitioned data sets.  Since n = 10, 
there will be ten such iterations until each partitioned data set has had the 
opportunity to be the held-out data set.  The classification results are 
observed for each iteration and then aggregated to give the model accuracy 
rates. 
 The above discussion focuses on accuracy rates, which are relevant 
for non-metric target variables.  Here, an error is a misclassification.  For 
metric target variables, however, an error is the difference between the 
actual and predicted value of the target variable.  That is, e = y - .  Several 

measures of model adequacy (or accuracy) can be constructed based on this.  
Two common ones are the following: 

ŷ

Mean Absolute Deviation (MAD) = (∑|e|)/N = (∑|y - |)/N ŷ
Mean Squared Error (MSE) = (∑e2)/N = (∑(y - )ŷ 2)/N 

where N is the total sample size (i.e., sample size of the total data set) and 
the summation is made over all the (n) partitioned data sets. 
 To illustrate, suppose that a prediction model is to be constructed to 
predict expenditure on healthcare services (a metric target variable) on the 
basis of several input variables.  Suppose further that a 10-fold validation 
method is to be used to compute MAD for the prediction model that is 
constructed using all the available data.  In this case, the available data will 
be randomly partitioned into ten data sets of equal (or approximately equal) 
size.  For each iteration, one of the ten partitioned data sets will be held-out 
as the validation sample for a model constructed based on the other nine 
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partitioned data sets.  Since n = 10, there will be ten such iterations until 
each partitioned data set has had the opportunity to be the held-out data set.  
The value of ∑|e| is computed for each iteration.  Finally, all ten ∑|e|’s are 
aggregated (i.e., summed up) and the total is divided by N to give the 
model’s accuracy rate (in this case, MAD).  Generally, the smaller the MAD 
or MSE, the more accurate the prediction model is. 
 Finally, model validation can also be used as a means to reduce 
over-fitting a model to the data in neural networks and decision trees.  Over-
fitting occurs when the model “memorises” the unique patterns in the 
construction data set so that the accuracy rates computed based on the 
construction data set (known as in-sample accuracy rates) are very high.  
However, because unique patterns in the construction data set are unlikely to 
exist in other data sets, the model will perform poorly when it is used.  In 
particular, when over-fitting occurs, the accuracy rates computed based on a 
validation data set (known as hold-out accuracy rates) will be much lower 
than the in-sample accuracy rates.  Therefore, to reduce the over-fitting 
problem, it is common during the training of neural networks and construction 
of decision trees to compare the in-sample and hold-out accuracy rates.  For 
example, in-sample accuracy rates may increase as a decision tree grows.  
However, the hold-out accuracy rates will decrease if there is over-fitting of 
the decision tree to the construction data set.  Hence, such a situation may 
activate a stopping rule for the decision tree.  The same applies to the 
training of neural networks.  Such stopping rules reduce over-fitting. 
 
4.3 Optimal Cut-off Points 
 
The discussion in this section is applicable only to prediction models with 
non-metric target variables.  In particular, this section examines the factors 
affecting the optimal cut-off point for such models.  To crystallise the 
concepts, recall the following logistic regression model: 
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Predicted Probability of Event = 1/[1 + e-( b0 + b1X1 + b2X2 + … + bpXp)] 
where X1 to Xp are the input variables.  As discussed in Chapter 3, the cut-off 
point for a logistic regression model can be expressed as either a cut-off 
probability or a cut-off theoretical index.  For simplicity, let Z denote the 
theoretical index without the constant term b0 and assume that the target 
variable has only two categories, L (for low) and H (for high). 
 Since there are two categories of the target variable, there must be 
two samples (denoted as samples L and H) corresponding to the two 
categories.  Together, these samples form the data set for model 
construction and validation.  The theoretical index (without the constant term) 
can be expressed as follows: 

Z = b1X1 + b2X2 + … + bpXp

Assume that substituting the mean values of the input variables in samples L 
and H gives ZL and ZH, respectively.  Then, without additional information, 
the optimal cut-off point (C) for the prediction model can be computed as: 

C = (ZL + ZH)/2 
The cut-off point C may be considered optimal in the sense that it minimises 
the total misclassifications by (roughly speaking) passing through the middle 
of the two categories L and H. 
 Assume that ZL < ZH.  Then, if an observation has Z ≥ C, the 
observation will be classified as H.  Conversely, if an observation has Z < C, 
the observation will be classified as L.  This is shown in Figure 4.1. 
 Generally, a cut-off point C computed in this manner tends to lead to 
approximately equal accuracy rates for categories L and H.  As can be 
observed from Figure 4.1, if the cut-off point C is moved to the right, the 
accuracy rate for category L will increase and that for category H will 
decrease as more observations are now predicted as category L.  
Conversely, if the cut-off point C is moved to the left, the accuracy rate for 
category L will decrease and that for category H will increase as more 
observations are now predicted as category H.  Hence, accuracy rates can 
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be affected by adjusting the cut-off point.  This also means that for a 
particular relative accuracy rate desired (e.g., the accuracy rate for category 
L should be about twice that for category H), it may be possible to adjust C to 
give this relative accuracy rate (or a relative accuracy rate close to it). 
 
 
             ZL        C = (ZL + ZH)/2            ZH

               Z 
 
 Z < C    Z ≥ C 
 ⇒ Predicted as Category L ⇒ Predicted as Category H 
 

Figure 4.1 Computation of Optimal Cut-off Point 
 
 There are two important factors that affect the optimal cut-off point.  
The first factor is the prior probabilities of the event and non-event occurring.  In 
order to minimise total misclassifications, the category that occurs more 
frequently (i.e., the category that has the higher prior probability) should be 
predicted more accurately.  Suppose that risk status (i.e., fraud versus non-
fraud) is to be predicted for credit card transactions and the prior probability of 
fraud is 1% (i.e., the prior probability of non-fraud is 99%).  (These prior 
probabilities can be estimated based on a large random sample of credit card 
transactions).  Suppose further that there are two competing prediction models.  
Model A has accuracy rates of 90% for both fraud and non-fraud, and hence an 
overall accuracy rate of also 90%.   On the other hand, Model B has accuracy 
rates of 80% for fraud and 91% for non-fraud, giving an (unweighted) overall 
accuracy rate of 85.5% (i.e., [80 + 91]/2), which is lower than that for Model A.  
(The weighted overall accuracy rate can be computed by using the relative 
proportions of fraud and non-fraud transactions in the data set as weights.  
Alternatively, it can be computed by dividing the total number of correct 
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classifications by the total number of observations in the data set.  This is done 
in the classification tables presented in Chapter 3). 
 Assume that there are 100,000 credit card transactions on average 
every month.  Given that the prior probabilities of fraudulent and non-fraudulent 
transactions are 1% and 99%, respectively, then out of the 100,000 credit card 
transactions, 1,000 can be expected to be fraudulent and 99,000 non-fraudulent.  
Based on this, the expected performance of the two models can be computed 
as shown in Table 4.1.  As can be seen, Model A has 10,000 misclassifications 
while Model B has only 9,110 misclassifications.  This may seem surprising as 
Model A predicts fraud better than Model B by a margin of 10% (i.e., 90 – 80) 
but predicts non-fraud worse than Model B by a margin of only 1% (90 – 91).  
The reason for the results in Table 4.1 is that non-fraudulent transactions occur 
a lot more frequently than fraudulent transactions.  Therefore, a small decrease 
in the accuracy rate of predicting non-fraudulent transactions translates into 
many misclassifications. 
 

Table 4.1 Number of Misclassifications for Models A and B 
 

Number of Misclassifications  
Prediction Model Fraud Non-fraud 

 
Total 

Model A 100 (0.1 x 1000) 9900 (0.1 x 99000) 10,000 

Model B 200 (0.2 x 1000) 8910 (0.09 x 99000) 9,110 

 
 
 From the above, it can be seen that in order to minimise 
misclassifications, the category of the target variable that occurs more 
frequently (i.e., a category with a higher prior probability) should be predicted 
more accurately.  This can be done by appropriately adjusting the cut-off 
point as shown in the following formula: 

C = (ZL + ZH)/2 + ln(qL/qH) 
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where qi is the prior probability of category i.  In the formula above, the 
categories L and H are defined such that ZL < ZH. 
 To illustrate, suppose that for the logistic regression model 
mentioned earlier, ZL = -1.50 and ZH = 1.50.  Also, the prior probabilities for L 
and H are qL = 0.75 and qH = 0.25, respectively.  Then, without considering 
prior probabilities, the optimal cut-off point C is: 

C = (ZL + ZH)/2 = (-1.50 + 1.50)/2 = 0 
When prior probabilities are considered, the new optimal cut-off point C* is: 

C* = (ZL + ZH)/2 + ln(qL/qH) 
= (-1.50 + 1.50)/2 + ln(0.75/0.25) 

= 1.10 (rounded to 2 decimal places) 
That is, the cut-off point is now moved to the right.  With reference to Figure 
4.1, when the new optimal cut-off point is moved to the right of the original 
cut-off point, the accuracy rate of predicting category L (the more commonly 
occurring category) will now be higher at the expense of a decrease in the 
accuracy rate of predicting category H.  This is shown in Figure 4.2. 
 
 
          C* = (ZL + ZH)/2 + ln(qL/qH) = 1.10 
 
           ZL = -1.50         C = (ZL + ZH)/2 = 0            ZH = 1.50 
           Z 
 
 
      Z < C*            Z ≥ C* 
      ⇒ Predicted as Category L          ⇒ Predicted as Category H 
 

Figure 4.2 Optimal Cut-off Point – Adjusted for Prior Probabilities 
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 The second factor that affects the optimal cut-off point is the relative 
misclassification costs.  This refers to the cost of misclassifying category L as 
H and the cost of misclassifying H as L.  Sometimes, the two 
misclassification costs may be the same but this is not always the case.  As 
will be seen later, it is the relative misclassification cost that is important in 
affecting the optimal cut-off point and not the absolute misclassification costs. 
 Consider, for example, the approval of consumer loans.  Suppose 
that a prediction model that predicts the default risk of payment (say, low-risk 
versus high-risk) is used in the loan approval process.  If a low-risk potential 
customer is misclassified as a high-risk potential customer, then the loan-
granting organisation would not approve the consumer loan.  In this case, the 
misclassification cost (of low-risk incorrectly classified as high-risk) is the 
interest income forgone (ignoring the effects of ill-will).  On the other hand, if 
a high-risk potential customer is misclassified as a low-risk potential 
customer, then the loan-granting organisation would approve the consumer 
loan.  In this case, the misclassification cost (of high-risk incorrectly classified 
as low-risk) is the loan and interest that are not collectible (ignoring the 
effects of legal expenses and whatever amount that can be recovered).  
Thus, misclassifying a high-risk potential customer is more costly than 
misclassifying a low-risk potential customer. 
 If misclassification costs are equal, then the optimal cut-off point is 
not affected.  Assuming a two-category classification, equal misclassification 
costs means that the relative misclassification cost is 1:1.  However, if 
misclassification costs are not equal (i.e., when the relative misclassification 
cost is not 1:1), then the optimal cut-off point should be adjusted so that the 
category whose misclassification is more costly is more accurately predicted.  
Only then can the total misclassification cost of using the prediction model be 
minimised.  This total misclassification cost (TMC) can be computed as 
follows: 

TMC = qL*Prob(H|L)*Cost(H|L) + qH*Prob(L|H)*Cost(L|H) 
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where Prob(i|j) is the probability of misclassifying category j as category i and 
Cost(i|j) is the misclassification cost of incorrectly classifying category j as 
category i.  As defined previously, qi is the prior probability of category i 
occurring.  Therefore, given the above, qL*Prob(H|L)*Cost(H|L) and qH* 
Prob(L|H)*Cost(L|H) are the misclassification costs of incorrectly classifying L 
as H and H as L, respectively.  Intuitively, qL*Prob(H|L)*Cost(H|L) applies the 
misclassification cost of L as H (i.e., Cost[H|L]) on a L occurrence (i.e., qL) 
that is incorrectly classified as a H occurrence (i.e., Prob[H|L]).  A similar 
interpretation can be given to qH*Prob(L|H)*Cost(L|H). 
 To minimise the total misclassification cost of using the prediction 
model, the optimal cut-off point can be computed as: 

C = (ZL + ZH)/2 + ln{[qL*Cost(H|L)]/[qH*Cost(L|H)]} 
where categories L and H are defined such that ZL < ZH.  The formula shows 
that it is the relative misclassification cost (i.e., Cost(H|L)/Cost(L|H)) and not 
the absolute misclassification costs that affect the optimal cut-off point.  That 
is, the two misclassification costs can be increased or decreased by the 
same percentage and the optimal cut-off point will remain the same.  The 
same comment, however, cannot be made about the prior probabilities (i.e., 
qL and qH) as they have to sum up to 1.  That is, increasing or decreasing the 
prior probabilities by the same percentage will violate the condition that 
probabilities sum up to 1.  The effect of the adjustment is to increase the 
accuracy rate of the category whose misclassification is relatively more costly. 
 Continuing with the logistic regression example, suppose that 
Cost(H|L) = $100 and Cost(L|H)) = $1000.  Then, incorporating 
misclassification costs, the optimal cut-off point (denoted C** in this example) 
is: 

C** = (-1.50 + 1.50)/2 + ln(0.75*100/0.25*1000) 
= 0 + ln(0.30) = -1.20 

With reference to the original optimal cut-off point of 0 (which does not 
consider prior probabilities and misclassification costs), the new optimal cut-
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off point is now moved to the left.  This will increase the accuracy rate of 
predicting category H (the more costly category to misclassify) at the 
expense of a decrease in the accuracy rate of predicting category L.  This is 
shown in Figure 4.3. 
 
 
           C** = (ZL + ZH)/2 + ln{[qL*Cost(H|L)]/[qH*Cost(L|H)]} = -1.20 
 
                      ZL = -1.50          C = (ZL + ZH)/2 = 0            ZH = 1.50 
              Z 
 
 
           Z < C**        Z ≥ C** 
           ⇒ Predicted as Category L      ⇒ Predicted as Category H 
 

Figure 4.3 Optimal Cut-off Point – Adjusted for Misclassification Costs 
 
 The discussion so far focuses on logistic regression.  The concepts 
related to optimal cut-off points, however, can be extended to neural 
networks and decision trees.  Essentially, the idea is to adjust the optimal 
cut-off points so as to reduce either the number of misclassifications or the 
total misclassification cost of using the model.  The models themselves are 
not adjusted (e.g., there is no attempt to adjust the logistic regression model 
coefficients) – only the cut-off point is. 
 In a data mining application, prior probabilities may be available (say, 
from previous research).  Otherwise, they can usually be estimated from a 
random sample.  Misclassification costs, however, are more difficult to 
estimate as they may require a fair amount of subjective judgement to be 
made.  As mentioned earlier, it is the relative misclassification costs and not 
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absolute misclassification costs that are important in determining the optimal 
cut-off point. 
 More information about prior probabilities and relative 
misclassification costs can be found be in Koh (1992) and Afifi and Clark 
(1996). 
 
4.4 Evaluation Charts 
 
As shown in Figure 1.1 in Chapter 1, the modelling stage of the data mining 
methodology includes the assessment of results and the identification of the 
final model.  Generally, assessment refers to a common framework to 
compare models and predictions.  Factors that may confound the 
comparison, such as the actual validation data set itself, have to be kept 
constant. 
 For any data mining application, there may be more than one data 
mining tool that can be used.  For predictive modelling with a non-metric 
target variable for example, logistic regression, neural network or decision 
tree models can be constructed.  If two or more these models give 
acceptable results, then there is a need to compare the performance of these 
models to select the final model that should be deployed.  One common 
benchmark for comparison is accuracy rates.  The most accurate model can 
be selected as the final model.  (The various types of accuracy rates will be 
discussed later). 
 Another common benchmark for comparison is evaluation charts.  
This benchmark is only relevant for the prediction of non-metric target 
variables.  (For metric target variables, evaluation charts can still be plotted if 
the target variables can be broken down into ranges or categories.  One 
possibility is to dichotomous the values of a metric target variable into values 
< mean and values ≥ mean).  If the target variable has more than two 
categories, one category of interest can be identified and the remaining 
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categories can be combined in plotting an evaluation chart.  For simplicity, 
this section assumes a non-metric target variable with only two categories: 
event and non-event, where event is the occurrence of interest. 
 Suppose that a prediction model has been constructed and is to be 
validated on a validation data set.  In the validation data set, the actual status 
(i.e., event or non-event) for each observation is known.  There are several 
kinds of evaluation charts that can be plotted.  The most popular ones are 
response charts, gains charts and lift charts.  To construct these charts, the 
model is first applied to the validation data set to generate predictions (i.e., 
classifications) on the data.  These give the predicted status of each 
observation.  The process of generating predictions is commonly referred to 
as scoring the data.  For each observation scored, in addition to the non-
metric prediction (i.e., event or non-event), there are usually other related 
measures that can be computed (e.g., the predicted probability of an event, 
the computed theoretical index or the confidence of the prediction). 
 To illustrate, consider a logistic regression model with the predicted 
probability of the event occurring and the predicted status scored for each 
observation.  In the first step, the predicted probabilities of the event 
occurring are sorted in descending order.  This means that observations that 
are higher up in the list have greater predicted probabilities of the event 
occurring.  If the prediction model is acceptable, then observations that are 
higher up in the sorted list are more likely to be actual events.  (In this 
discussion, it is important to differentiate between actual status and the 
predicted status of event and non-event).  The converse is true for 
observations lower down in the sorted list.  That is, observations lower down 
in the list should have lower predicted probabilities that they are events.  
They are also less likely to be actual events. 
 In the next step, the observations as ordered in the list are then 
grouped into equal-size (or approximately equal-size) segments.  While there 
are no fixed rules on the number of segments that is appropriate, it is 
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common to group the observations into deciles (i.e., ten segments).  For a 
model with high predictive power, actual events are expected to be 
concentrated in the higher segments (where observations are predicted to 
have higher probabilities of being events). 
 To understand the computations involved, let the sample size of the 
validation data set be N and let the scored and sorted observations be 
grouped into g segments.  For the ith segment, let the sample size be 
denoted by ni.  If the sorting and grouping of scored observations form 
segments of equal size, then ni is the same for every segment.  Further, let A 
be the number of actual events in the validation data set and Ai the number 
of actual events in segment i (i.e., A = ∑Ai, summed over all the i segments).  
If the actual events are randomly distributed in the validation data set, then 
for any segment i, the number of actual events in that segment is expected to 
be Ei = [(A/N) x ni].  Based on the above, the following three measures can 
be computed: 
1) Response (%) in segment i
 = (number of actual events in segment i)/(number of observations in 

    segment i) 
 = (Ai/ni) x 100% 
2) Gains (%) in segment i 
 = (number of actual events in segment i)/(number of actual events in 

    the validation data set) 
 = (Ai/A) x 100% 
3) Lift value for segment i 
 = (response in segment i)/(response in the validation data set) 
 = (Ai/ni)/(A/N) 
 Since the predicted probabilities of an event are sorted in 
descending order before they are grouped into segments, the three 
measures listed above are expected to decrease from the first to the last 
segment.  Also, a good prediction model will show high values for the 
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measures for the first few segments and low values for the last few segments.  
Generally, the term “response” refers to an event of interest.  In many 
customer relationship management applications, the target variable may 
actually be some kind of a response (say, customer response to direct 
marketing campaigns or to cross-selling or up-selling efforts). 
 The computational formulas listed above are based on the concept 
of hit rates, which is quite different from the concept of accuracy rates.  In 
predictive modelling, a hit can be defined as the actual occurrence of an 
event.  Consider Table 4.2. 
 

Table 4.2 Illustrative Classification Table 
 

Predicted Status  
Actual Status Event Non-event 

 
Total 

Event A B (A + B) 

Non-event C D (C + D) 

Total (A + C) (B + D) (A + B + C + D) 

 
 
 The computation of accuracy rates uses the actual status of the 
target variable as a base.  For example, the accuracy rates for event and 
non-event are A/(A + B) and D/(C + D), respectively.  On the other hand, the 
computation of hit rates uses the predicted status as a base and focuses on 
the actual occurrence of the event.  Hence, the hit rates for (predicted) event 
and non-event are A/(A + C) and B/(B + D), respectively.  For a good 
prediction model, the former should be high and the latter low.  (The “hit” rate 
D/(B + D) is also useful as it looks at the extent to which predicted non-
events are actually non-events.  This rate should also be high for a good 
prediction model).  While accuracy rates answer the question “to what extent 
are the actual events and non-events predicted correctly?”, hit rates answer 
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the question “given the model predictions of events, to what extent do events 
actually occur?”.  Both accuracy rates and hit rates are useful in assessing 
the performance of prediction models. 
 Given the above, the following interpretations can be made: 
1) Response in segment i indicates the hit rate in segment i.  As the 

predicted probabilities of the event are already sorted in descending 
order, hit rates are expected to be higher in segments that are 
higher up in the sorted list. 

2) Gains in segment i indicates the percentage of hits captured in 
segment i. 

 3) Finally, the lift value measures how much better the hit rate in 
segment i is compared to the random hit rate (i.e., the hit rate of a 
segment of randomly selected observations). 

In a way, all the measures indicate prediction effectiveness.  A higher value 
is associated with greater effectiveness. 
 Table 4.3 illustrates the computation of response, gains and lift 
value.  As expected, the measures decrease from the first segment to the 
last segment (because the segments are already sorted in descending order 
of the predicted probabilities of the event).  There is also a strong similarity 
between gains and lift value.  This will be the case as long as the segments 
are of equal (or approximately equal) size. 
 Evaluation charts can be plotted for each of the measures.  In 
particular, response charts have the response in segment i plotted on the y-
axis.  Similarly, gains and lift charts have gains and lift value in segment i 
plotted on the y-axis, respectively.  For all the evaluation charts, segments 
are plotted on the x-axis.  For the current illustration, segments are grouped 
into deciles.  However, segments can also be grouped into percentiles (i.e., 
the list of descending predicted probabilities can be grouped into 100 
segments), quantiles (five segments) or any other number of segments 
deemed appropriate for plotting evaluation charts. 
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Table 4.3 Computation of Response, Gains and Lift Value 

 

Segment 

Number Size 

Number 
of Events 

Response (%) Gains 
(%) 

Lift 
Value 

1 100 80 80.00% 26.68%* 2.68* 

2 100 70 70.00% 23.33% 2.33 

3 100 60 60.00% 20.00% 2.00 

4 100 40 40.00% 13.33% 1.33 

5 100 25 25.00% 8.33% 0.83 

6 100 15 15.00% 5.00% 0.50 

7 100 10 10.00% 3.33% 0.33 

8 100 0 0.00% 0.00% 0.00 

9 100 0 0.00% 0.00% 0.00 

10 100 0 0.00% 0.00% 0.00 

Total 
(Average) 

1000 300  
(30.00%)** 

 
(10.00%)** 

 
(1.00)** 

* Rounded up. 
** Related to the baseline model (to be discussed later). 

 
 
 Evaluation charts can also be cumulative or non-cumulative.  
Cumulative charts are plotted based on cumulative measures.  These are 
measures computed by aggregating the current segment and all 
earlier/higher segments.  Table 4.4 illustrates the cumulative lift value.  Both 
cumulative and non-cumulative lift charts usually show a downward sloping 
curve (reflecting higher lift values for earlier segments).  An erratic curve 
usually suggests problems with the data or prediction model as it means that 
segments with lower predicted probabilities of the event can predict the event 
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better than segments with higher predicted probabilities of the event.  This is 
counter-intuitive.  This, however, can occur if too many segments are 
specified in the evaluation chart.  Generally, cumulative evaluation charts 
involve averaging across segments and hence are more gradual compared 
to non-cumulative charts. 
 

Table 4.4 Computation of Cumulative Lift Value 
 

Segment 

Number Size 

Number 
of Events 

Cumulative Number 
of Events 

Cumulative 
Lift Value 

1 100 80 80 2.68* 

2 100 70 150 2.50 

3 100 60 210 2.33 

4 100 40 250 2.08 

5 100 25 275 1.83 

6 100 15 290 1.61 

7 100 10 300 1.43 

8 100 0 300 1.25 

9 100 0 300 1.11 

10 100 0 300 1.00 

Total 1000 300 300 1.00 

* Rounded up. 

 
 
 Various benchmarks can be incorporated into an evaluation chart.  
The most common benchmark is the baseline model.  It represents the 
response, gains or lift value if the observations in each segment are selected 
randomly.  For example, in Table 4.3, there are 300 events out of 1000 
observations.  Therefore, if observations are selected randomly in each 
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segment, then 30% of the segment can be expected to comprise events (or 
responses).  The baseline model is reflected as a horizontal line anchored at 
the response, gains or lift value of a “random” segment (see the Total 
(Average) row in Table 4.3). 
 An exact model can also be incorporated into an evaluation chart.  
This model represents a “perfect” model where actual occurrences of the 
event are associated with the highest predicted probabilities of the event.  
The exact model in Table 4.3 will have 100 events in each of the first three 
segments.  Graphically, the exact model is usually represented by very high 
values, followed by sharp drops to very low values. 
 Based on Table 4.4, a cumulative lift chart with a baseline model is 
plotted in Figure 4.4.  (The SPSS statistics software is used for this purpose). 
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Figure 4.4 Cumulative Lift Chart with Baseline Model 
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 As expected, since the baseline model randomly selects 
observations, its lift value and cumulative lift value will be 1 (which indicates 
random distribution of the events among segments).  Generally, the higher 
the lift chart for a prediction model, the better its prediction effectiveness (i.e., 
hit rates).  Ideally, the lift value for the first few segments should be as high 
as possible.  The upper bound (which is the lift value for the first or first few 
segments of the exact model) is N/A (derived from (Ai/ni)/(A/N) = 1/(A/N) = 
N/A).  This derivation assumes that A > ni so that all the observations in the 
first few segments of the exact model are events (implying that Ai = ni and 
therefore Ai/ni = 1); otherwise, the upper bound has to be computed using the 
lift value formula. 
 Evaluation charts similar to Figure 4.4 can also be plotted with 
response or gains as the y-axis.  Generally, evaluation charts are a good 
means to compare the performance (i.e., prediction effectiveness) of different 
prediction models.  The best or champion model is the one that dominates 
the others in terms of having the highest evaluation chart.  Usually, only the 
first few segments (which give the highest predicted probabilities of the event) 
are of interest.  Hence, evaluation charts are usually assessed from the left 
side of the chart and greater weightage is given to the first few segments (or 
to a particular portion of the validation data specified in the data mining 
application [e.g., the first 20% of the data]).  This is especially the case when 
evaluation charts cross.  In such a case, no chart is the highest for all the 
segments.  More discussion of evaluation charts will be presented in section 
4.6 below. 
 
4.5 Financial Assessment of Prediction Models 
 
Data mining applications are primarily developed and used in the commercial 
world.  Hence, it is not surprising that the assessment of models frequently 
involves financial aspects in addition to performance measures such as 
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accuracy and hit rates.  Financial assessment can also be conducted using 
evaluation charts and tables. 
 In addition to the response, gains and lift charts discussed in the 
previous section, evaluation charts can also take the form of profit charts and 
ROI (return on investment) charts.  As before, these charts are applicable 
only for non-metric target variable prediction (or metric target variable 
prediction where the target variable values are broken down into ranges or 
categories).  Both profit and ROI assume a particular business action that 
leads to cost and revenue.  Profit is defined as revenue less cost while ROI is 
defined as the ratio of profit to cost.  Thus, while profit measures absolute 
return, ROI measures relative return. 
 Suppose that MailPurchase (the mail order company that has been 
used in previous illustrations) is planning a mail campaign to promote a 
particular product.  The cost of printing and mailing a brochure to an existing 
customer is $4.  If the customer responds to the mailing campaign and buys 
the promoted product, the revenue generated is $10.  Suppose further that to 
target the existing customers better, MailPurchase has constructed a 
prediction model to classify existing customers as potential purchasers or 
non-purchasers.  For this model, the target variable is purchase and non-
purchase, where purchase is the response or event of interest.  With a cost 
of $4 and revenue of $10, if a campaign brochure is printed and mailed to an 
existing customer and this customer does not purchase the promoted 
product, then MailPurchase would suffer a loss of $4 (which is the cost of 
printing and mailing the brochure).  On the other hand, if the customer 
purchases the product, then MailPurchase would make a profit of $6 (i.e., 
$10 - $4).  Extending this to the illustration in Table 4.4, a cumulative profit 
table can be constructed as shown in Table 4.5. 
 The cumulative profit in Table 4.5 is only the expected cumulative 
profit and not the actual one; it is based on the validation data set.  It is a 
means to assess the expected performance of the model when it is actually 
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used.  With a constant unit cost of $4 per printing and mailing of the 
campaign brochure and a segment size of 100, the cumulative cost 
increases at a constant rate of $400 for each additional segment.  The 
cumulative revenue is the product of the cumulative number of events (i.e., 
responses) and the revenue per unit response of $10.  Cumulative profit is 
just the difference between cumulative revenue and cumulative cost. 
 

Table 4.5 Expected Profit for the Mailing Campaign 
 

Segment 

Number Size 

Cumulative 
Number of 

Events 

Cumulative 
Cost* 

Cumulative 
Revenue** 

Cumulative 
Profit*** 

1 100 80 $400 $800 $400 

2 100 150 $800 $1500 $700 

3 100 210 $1200 $2100 $900 

4 100 250 $1600 $2500 $900 

5 100 275 $2000 $2750 $750 

6 100 290 $2400 $2900 $500 

7 100 300 $2800 $3000 $200 

8 100 300 $3200 $3000 – $200 

9 100 300 $3600 $3000 – $600 

10 100 300 $4000 $3000 – $1000 

Total 1000 300 $4000 $3000 – $1000 

* Cumulative Cost = $4 x Cumulative Segment Size 
** Cumulative Revenue = $10 x Cumulative Number of Events 
*** Cumulative Profit = Cumulative Revenue – Cumulative Cost 
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 As shown in Table 4.5, cumulative profit increases steadily from 
$400 until it reaches a maximum of $900 when either 300 or 400 campaign 
brochures are printed and mailed to the existing customers.   This means 
that to maximise its profit, MailPurchase should send out either 300 or 400 
campaign brochures.  Both courses of action lead to an expected cumulative 
profit of $900.  However, MailPurchase may not be indifferent to these two 
courses of action.  Assuming that only these two courses of actions are 
considered, if MailPurchase wishes to maximise market share of the 
promoted product or introduce the product to as many consumers as 
possible (while attempting to maximise profit), then printing and mailing 400 
campaign brochures and getting 250 expected responses (i.e., purchases) is 
the preferred course of action.  On the other hand, if MailPurchase faces an 
immediate budget constraint on its printing and mailing expenditure, then 
printing and mailing 300 campaign brochures is the preferred course of 
action. 
 A more precise table can be constructed with a larger number of 
segments (and a corresponding smaller segment size).  This may, for 
example, indicate that the optimal course of action to maximise profit is to 
print and mail 325 campaign brochures, giving a profit of more than $900. 
 Table 4.5 also shows that after the fourth segment, cumulative profit 
decreases and eventually becomes a cumulative loss.  A break-even point 
can be defined as the point of zero profit (i.e., where cumulative profit exactly 
equals cumulative cost).  This occurs between mailing 700 and 800 
campaign brochures.  As before, a larger number of segments (and a 
corresponding smaller segment size) can give a more precise break-even 
point.  The break-even point can be a preferred course of action if 
MailPurchase wishes to have as great a market share as possible without 
incurring a loss. 
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 Table 4.5 can be plotted as a cumulative profit chart.  This is shown 
in Figure 4.5 using the SPSS statistics software.  The baseline model has a 
loss of $100 ($300 – $400) for each segment. 
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Figure 4.5 Cumulative Profit Chart with Baseline Model 

 
 Finally, sensitivity analysis can be performed to assess the impact of 
selected variables of interest on the outcome by varying the variables of 
interest (usually one at a time) and observing the resultant changes in the 
outcome.  In Table 4.5, the outcome is cumulative profit and the variable of 
interest may be, say, the cost of printing the brochure.  Assume that different 
brochures with the same promotional content may be printed, depending on 
the colour schemes, paper quality, brochure size … etc.  This may mean that 
the per unit cost of printing and mailing each brochure may be $3.50, $4 or 
$4.50.  These possibilities can be used to construct three different 
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cumulative profit tables or charts.  Examination of these tables or charts can 
help MailPurchase assess the effects of different scenarios and decisions 
and hence make a better decision on its marketing campaign.  Sensitivity 
analysis results can also indicate risk (e.g., the results may show that a small 
increase in per unit cost may have a very adverse impact on the cumulative 
profit). 
 
4.6 Illustration of Predictive Modelling – A Revisit 
 
To illustrate some of the data mining issues discussed in this chapter, assume 
that MailPurchase wishes to extend its predictive modelling efforts in Chapter 3, 
where the following data are captured: 
1) Status: whether the customer has purchased a promoted product in 

any of the quarterly marketing campaigns last year; 
2) Expend: average monthly expenditure on the company’s products last 

year; 
3) Numpur: average number of purchases per quarter last year; 
4) Age: age of customer as at 1 January last year; 
5) Gender: gender of customer; 
6) Income: annual income of customer as at 1 January last year (in $’000); 
7) Race: race of customer; 
8) Marital: marital status of customer as at 1 January last year; and 
9) Member: whether the customer is a member of the loyalty card 

programme last year. 
(More details are given in section 2.2.1 of Chapter 2). 
 To develop the next marketing campaign, MailPurchase is interested to 
target only existing customers with a high probability of purchase.  Hence, it is 
interested to classify existing customers as likely purchasers or non-purchasers.  
In this predictive modelling application, the target variable is “status” and the 
input variables comprise both purchasing patterns (namely, expend and numpur) 
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and demographic characteristics (namely, age, gender, income, race, marital 
and member). 
 For this application, MailPurchase has decided to use SPSS 
Clementine.  As shown in Chapter 3, three prediction models can be 
constructed using the logistic regression, neural network and decision tree 
nodes.  To improve on these analyses, MailPurchase has decided to partition 
the data into a construction data set (comprising 70% of the database selected 
randomly) and a validation data set (comprising the remaining 30%).  To assess 
the performance of the three prediction models and to identify a “champion” or 
best model, MailPurchase has decided to examine their accuracy rates, lift 
charts and profit charts. 
 The Clementine data mining stream is shown in Figure 4.6.  As can 
be seen, the available data are now randomly partitioned into a 70% 
construction data set (with filename MailPurchase_70%.sav) and a 30% 
validation data set (with filename MailPurchase_30%.sav).  Logistic 
regression, neural network and decision tree models are constructed using 
the construction data set (see top half of Figure 4.6).  The constructed 
models (represented by the yellow diamond icons) are then bought into the 
data mining stream to compare their accuracy rates, lift charts and profit 
charts.  A per unit cost of $4 and per unit revenue of $10 (for each response) 
are assumed in plotting the profit charts.  The top half of Figure 4.6 relates to 
assessment based on the construction data set and the bottom half relates to 
assessment based on the validation data set. 
 The assessment results are summarised in Figures 4.7 to 4.9, 
where the left panels show the in-sample results based on the construction 
data set and the right panels show the hold-out results based on the 
validation data set.  As mentioned earlier, in-sample results tend to be 
upward biased because the same data set is used to construct and validate 
the model. 
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Figure 4.6 Data Mining Stream for Predictive Modelling Illustration 
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 Also, neural networks and decision trees are prone to over-fitting.  
Hence, it is common for stopping rules of these two models to involve hold-
out data sets.  In Figures 4.7 to 4.9, the in-sample results are provided for 
reference only.  Interpretation of the assessment results will be based on the 
hold-out results (i.e., the validation data set). 
 As shown in Figure 4.7 (right panel), the logistic regression model is 
the most accurate with an overall accuracy rate of 67.38%, followed by the 
neural network model (accuracy of 65.95%) and the decision tree model 
(accuracy of 65.24%).  Hence, based on overall accuracy rates alone, the 
logistic regression model is the best (i.e., champion) model. 
 The lift charts in Figure 4.8 (right panel) shows a more detailed 
picture.  As highlighted earlier, lift charts are based on hit rates and not 
accuracy rates.  As shown, for the first two segments (or deciles since the 
validation data set is grouped into ten segments), the neural network model 
dominates with a lift value of 1.6.  However, from the third segment onwards, 
the logistic regression model dominates.  Hence, which model is best 
depends on how the model will be used. 
 For this data mining application, this means that which model is best 
depends on how many customers MailPurchase intends to target.  Suppose 
that MailPurchase wishes to target the top 50% of customers in the database 
with the highest probabilities (or confidence) of purchase.  Then, the logistic 
regression model will be the best model to use.  However, if only the top 20% 
of customers should be targeted, then the neural network model should be 
used. 
 In addition to the above, suppose that MailPurchase wants to 
consider the financial aspects of using the prediction model (by incorporating 
the cost and revenue per unit of response to the marketing campaign).  In 
this case, the profit charts in Figure 4.9 (right panel) will be relevant. 
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Figure 4.7 Comparative Accuracy Rates 
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Figure 4.8 Comparative Lift Charts 
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Figure 4.9 Comparative Profit Charts 
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 To maximise profit, MailPurchase should use the logistic regression 
model to predict the probability of purchase and send the marketing brochure 
to the top 60% (i.e., first six segments) with the highest predicted 
probabilities of purchase. 
 Finally, the comparative results of the logistic regression, neural 
network and decision tree models discussed above are not generalisable to 
other data mining applications.  Which model is best depends on the data set 
and the context.  Also, the decision tree model does not appear to work well 
(relative to the other two models) in this illustration.  However, it is easy to 
interpret and use, as shown in Figure 4.10 (based on the construction data 
set only).  In some other data mining applications, decision trees may provide 
the best performance. 
 
4.7 Summary 
 
This chapter discusses a few important data mining issues that are 
applicable in the predictive modelling context.  In particular, the need for and 
the common methods of model validation are discussed.  Validation (or hold-
out sample) results give better assessment of the prediction models. 
 Next, two factors that affect the optimal cut-off point are highlighted.  
These are the prior probabilities of event and non-event and the relative 
misclassification cost.  Adjustment to the cut-off point is required to ensure 
either a minimum number of misclassifications or a minimum expected cost 
of using the model. 
 Assessment of models is an important part of the data mining 
process.  In this chapter, evaluation charts based on hit rates (i.e., response, 
gains and lift charts) are discussed.  They can be used to compare 
competing prediction models and provide an alternative perspective to 
accuracy rates. 
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Figure 4.10 Decision Tree Model 
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 Evaluation charts are next extended to incorporate financial aspects.  
This leads to profit and ROI (return on investment) charts, which relate back 
to the commercial objectives of data mining applications.  Generally, the idea 
is to maximise either profit or ROI.  Evaluation charts can be cumulative or 
non-cumulative. 
 Finally, the illustrations in the previous chapter are combined and 
extended to look at logistic regression, neural networks and decision trees in 
the same data mining stream.  Also, model validation and evaluation charts 
are employed to assess the prediction models.  Some of the data mining 
issues discussed in this chapter can also be found in Koh and Chan (2002). 
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